千家信息网

PostgreSQL中哪个函数为heap tuple找到合适的分区

发表于:2025-11-10 作者:千家信息网编辑
千家信息网最后更新 2025年11月10日,本篇内容介绍了"PostgreSQL中哪个函数为heap tuple找到合适的分区"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望
千家信息网最后更新 2025年11月10日PostgreSQL中哪个函数为heap tuple找到合适的分区

本篇内容介绍了"PostgreSQL中哪个函数为heap tuple找到合适的分区"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

一、数据结构

ModifyTable
ModifyTable Node
通过插入、更新或删除,将子计划生成的行应用到结果表。

/* ---------------- *   ModifyTable node - *      Apply rows produced by subplan(s) to result table(s), *      by inserting, updating, or deleting. *      通过插入、更新或删除,将子计划生成的行应用到结果表。 * * If the originally named target table is a partitioned table, both * nominalRelation and rootRelation contain the RT index of the partition * root, which is not otherwise mentioned in the plan.  Otherwise rootRelation * is zero.  However, nominalRelation will always be set, as it's the rel that * EXPLAIN should claim is the INSERT/UPDATE/DELETE target. * 如果最初命名的目标表是分区表,则nominalRelation和rootRelation都包含分区根的RT索引,计划中没有另外提到这个索引。 * 否则,根关系为零。但是,总是会设置名义关系,nominalRelation因为EXPLAIN应该声明的rel是INSERT/UPDATE/DELETE目标关系。 *  * Note that rowMarks and epqParam are presumed to be valid for all the * subplan(s); they can't contain any info that varies across subplans. * 注意,rowMarks和epqParam被假定对所有子计划有效; * 它们不能包含任何在子计划中变化的信息。 * ---------------- */typedef struct ModifyTable{    Plan        plan;    CmdType     operation;      /* 操作类型;INSERT, UPDATE, or DELETE */    bool        canSetTag;      /* 是否需要设置tag?do we set the command tag/es_processed? */    Index       nominalRelation;    /* 用于EXPLAIN的父RT索引;Parent RT index for use of EXPLAIN */    Index       rootRelation;   /* 根Root RT索引(如目标为分区表);Root RT index, if target is partitioned */    bool        partColsUpdated;    /* 更新了层次结构中的分区关键字;some part key in hierarchy updated */    List       *resultRelations;    /* RT索引的整型链表;integer list of RT indexes */    int         resultRelIndex; /* 计划链表中第一个resultRel的索引;index of first resultRel in plan's list */    int         rootResultRelIndex; /* 分区表根索引;index of the partitioned table root */    List       *plans;          /* 生成源数据的计划链表;plan(s) producing source data */    List       *withCheckOptionLists;   /* 每一个目标表均具备的WCO链表;per-target-table WCO lists */    List       *returningLists; /* 每一个目标表均具备的RETURNING链表;per-target-table RETURNING tlists */    List       *fdwPrivLists;   /* 每一个目标表的FDW私有数据链表;per-target-table FDW private data lists */    Bitmapset  *fdwDirectModifyPlans;   /* FDW DM计划索引位图;indices of FDW DM plans */    List       *rowMarks;       /* rowMarks链表;PlanRowMarks (non-locking only) */    int         epqParam;       /* EvalPlanQual再解析使用的参数ID;ID of Param for EvalPlanQual re-eval */    OnConflictAction onConflictAction;  /* ON CONFLICT action */    List       *arbiterIndexes; /* 冲突仲裁器索引表;List of ON CONFLICT arbiter index OIDs  */    List       *onConflictSet;  /* SET for INSERT ON CONFLICT DO UPDATE */    Node       *onConflictWhere;    /* WHERE for ON CONFLICT UPDATE */    Index       exclRelRTI;     /* RTI of the EXCLUDED pseudo relation */    List       *exclRelTlist;   /* 已排除伪关系的投影列链表;tlist of the EXCLUDED pseudo relation */} ModifyTable;

ResultRelInfo
ResultRelInfo结构体
每当更新一个现有的关系时,我们必须更新关系上的索引,也许还需要触发触发器。ResultRelInfo保存关于结果关系所需的所有信息,包括索引。

/* * ResultRelInfo * ResultRelInfo结构体 * * Whenever we update an existing relation, we have to update indexes on the * relation, and perhaps also fire triggers.  ResultRelInfo holds all the * information needed about a result relation, including indexes. * 每当更新一个现有的关系时,我们必须更新关系上的索引,也许还需要触发触发器。 * ResultRelInfo保存关于结果关系所需的所有信息,包括索引。 *  * Normally, a ResultRelInfo refers to a table that is in the query's * range table; then ri_RangeTableIndex is the RT index and ri_RelationDesc * is just a copy of the relevant es_relations[] entry.  But sometimes, * in ResultRelInfos used only for triggers, ri_RangeTableIndex is zero * and ri_RelationDesc is a separately-opened relcache pointer that needs * to be separately closed.  See ExecGetTriggerResultRel. * 通常,ResultRelInfo是指查询范围表中的表; * ri_RangeTableIndex是RT索引,而ri_RelationDesc只是相关es_relations[]条目的副本。 * 但有时,在只用于触发器的ResultRelInfos中,ri_RangeTableIndex为零(NULL), *   而ri_RelationDesc是一个需要单独关闭单独打开的relcache指针。 *   具体可参考ExecGetTriggerResultRel结构体。 */typedef struct ResultRelInfo{    NodeTag     type;    /* result relation's range table index, or 0 if not in range table */    //RTE索引    Index       ri_RangeTableIndex;    /* relation descriptor for result relation */    //结果/目标relation的描述符    Relation    ri_RelationDesc;    /* # of indices existing on result relation */    //目标关系中索引数目    int         ri_NumIndices;    /* array of relation descriptors for indices */    //索引的关系描述符数组(索引视为一个relation)    RelationPtr ri_IndexRelationDescs;    /* array of key/attr info for indices */    //索引的键/属性数组    IndexInfo **ri_IndexRelationInfo;    /* triggers to be fired, if any */    //触发的索引    TriggerDesc *ri_TrigDesc;    /* cached lookup info for trigger functions */    //触发器函数(缓存)    FmgrInfo   *ri_TrigFunctions;    /* array of trigger WHEN expr states */    //WHEN表达式状态的触发器数组    ExprState **ri_TrigWhenExprs;    /* optional runtime measurements for triggers */    //可选的触发器运行期度量器    Instrumentation *ri_TrigInstrument;    /* FDW callback functions, if foreign table */    //FDW回调函数    struct FdwRoutine *ri_FdwRoutine;    /* available to save private state of FDW */    //可用于存储FDW的私有状态    void       *ri_FdwState;    /* true when modifying foreign table directly */    //直接更新FDW时为T    bool        ri_usesFdwDirectModify;    /* list of WithCheckOption's to be checked */    //WithCheckOption链表    List       *ri_WithCheckOptions;    /* list of WithCheckOption expr states */    //WithCheckOption表达式链表    List       *ri_WithCheckOptionExprs;    /* array of constraint-checking expr states */    //约束检查表达式状态数组    ExprState **ri_ConstraintExprs;    /* for removing junk attributes from tuples */    //用于从元组中删除junk属性    JunkFilter *ri_junkFilter;    /* list of RETURNING expressions */    //RETURNING表达式链表    List       *ri_returningList;    /* for computing a RETURNING list */    //用于计算RETURNING链表    ProjectionInfo *ri_projectReturning;    /* list of arbiter indexes to use to check conflicts */    //用于检查冲突的仲裁器索引的列表    List       *ri_onConflictArbiterIndexes;    /* ON CONFLICT evaluation state */    //ON CONFLICT解析状态    OnConflictSetState *ri_onConflict;    /* partition check expression */    //分区检查表达式链表    List       *ri_PartitionCheck;    /* partition check expression state */    //分区检查表达式状态    ExprState  *ri_PartitionCheckExpr;    /* relation descriptor for root partitioned table */    //分区root根表描述符    Relation    ri_PartitionRoot;    /* Additional information specific to partition tuple routing */    //额外的分区元组路由信息    struct PartitionRoutingInfo *ri_PartitionInfo;} ResultRelInfo;

PartitionRoutingInfo
PartitionRoutingInfo结构体
分区路由信息,用于将元组路由到表分区的结果关系信息。

/* * PartitionRoutingInfo * PartitionRoutingInfo - 分区路由信息 *  * Additional result relation information specific to routing tuples to a * table partition. * 用于将元组路由到表分区的结果关系信息。 */typedef struct PartitionRoutingInfo{    /*     * Map for converting tuples in root partitioned table format into     * partition format, or NULL if no conversion is required.     * 映射,用于将根分区表格式的元组转换为分区格式,如果不需要转换,则转换为NULL。     */    TupleConversionMap *pi_RootToPartitionMap;    /*     * Map for converting tuples in partition format into the root partitioned     * table format, or NULL if no conversion is required.     * 映射,用于将分区格式的元组转换为根分区表格式,如果不需要转换,则转换为NULL。     */    TupleConversionMap *pi_PartitionToRootMap;    /*     * Slot to store tuples in partition format, or NULL when no translation     * is required between root and partition.     * 以分区格式存储元组的slot.在根分区和分区之间不需要转换时为NULL。     */    TupleTableSlot *pi_PartitionTupleSlot;} PartitionRoutingInfo;

TupleConversionMap
TupleConversionMap结构体,用于存储元组转换映射信息.

typedef struct TupleConversionMap{    TupleDesc   indesc;         /* 源行类型的描述符;tupdesc for source rowtype */    TupleDesc   outdesc;        /* 结果行类型的描述符;tupdesc for result rowtype */    AttrNumber *attrMap;        /* 输入字段的索引信息,0表示NULL;indexes of input fields, or 0 for null */    Datum      *invalues;       /* 析构源数据的工作空间;workspace for deconstructing source */    bool       *inisnull;       //是否为NULL标记数组    Datum      *outvalues;      /* 构造结果的工作空间;workspace for constructing result */    bool       *outisnull;      //null标记} TupleConversionMap;

二、源码解读

ExecFindPartition函数在以父节点为根的分区树中为包含在*slot中的元组找到目标分区(叶子分区)

/* * ExecFindPartition -- Find a leaf partition in the partition tree rooted * at parent, for the heap tuple contained in *slot * ExecFindPartition -- 在以父节点为根的分区树中为包含在*slot中的堆元组找到目标分区(叶子分区) *  * estate must be non-NULL; we'll need it to compute any expressions in the * partition key(s) * estate不能为NULL;需要使用它计算分区键上的表达式 * * If no leaf partition is found, this routine errors out with the appropriate * error message, else it returns the leaf partition sequence number * as an index into the array of (ResultRelInfos of) all leaf partitions in * the partition tree. * 如果没有找到目标分区,则此例程将输出适当的错误消息, *   否则它将分区树中所有叶子分区的数组(ResultRelInfos)的目标分区序列号作为索引返回。 */intExecFindPartition(ResultRelInfo *resultRelInfo, PartitionDispatch *pd,                  TupleTableSlot *slot, EState *estate){    int         result;//结果索引号    Datum       values[PARTITION_MAX_KEYS];//值类型Datum    bool        isnull[PARTITION_MAX_KEYS];//是否null?    Relation    rel;//关系    PartitionDispatch dispatch;//    ExprContext *ecxt = GetPerTupleExprContext(estate);//表达式上下文    TupleTableSlot *ecxt_scantuple_old = ecxt->ecxt_scantuple;//原tuple slot    TupleTableSlot *myslot = NULL;//临时变量    MemoryContext   oldcxt;//原内存上下文    HeapTuple       tuple;//tuple    /* use per-tuple context here to avoid leaking memory */    //使用每个元组上下文来避免内存泄漏    oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));    /*     * First check the root table's partition constraint, if any.  No point in     * routing the tuple if it doesn't belong in the root table itself.     * 首先检查根表的分区约束(如果有的话)。如果元组不属于根表本身,则没有必要路由它。     */    if (resultRelInfo->ri_PartitionCheck)        ExecPartitionCheck(resultRelInfo, slot, estate, true);    /* start with the root partitioned table */    //从root分区表开始    tuple = ExecFetchSlotTuple(slot);//获取tuple    dispatch = pd[0];//root    while (true)    {        PartitionDesc partdesc;//分区描述符        TupleConversionMap *map = dispatch->tupmap;//转换映射        int         cur_index = -1;//当前索引        rel = dispatch->reldesc;//relation        partdesc = RelationGetPartitionDesc(rel);//获取rel描述符        /*         * Convert the tuple to this parent's layout, if different from the         * current relation.         * 如果元组与当前关系不同,则将tuple转换为parent's layout。         */        myslot = dispatch->tupslot;        if (myslot != NULL && map != NULL)        {            tuple = do_convert_tuple(tuple, map);            ExecStoreTuple(tuple, myslot, InvalidBuffer, true);            slot = myslot;        }        /*         * Extract partition key from tuple. Expression evaluation machinery         * that FormPartitionKeyDatum() invokes expects ecxt_scantuple to         * point to the correct tuple slot.  The slot might have changed from         * what was used for the parent table if the table of the current         * partitioning level has different tuple descriptor from the parent.         * So update ecxt_scantuple accordingly.         * 从元组中提取分区键。         * FormPartitionKeyDatum()调用的表达式计算机制期望ecxt_scantuple指向正确的元组slot。         * 如果当前分区级别的表与父表具有不同的元组描述符,那么slot可能已经改变了父表使用的slot。         * 因此相应地更新ecxt_scantuple。         */        ecxt->ecxt_scantuple = slot;        FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);        /*         * Nothing for get_partition_for_tuple() to do if there are no         * partitions to begin with.         * 如无分区,则退出(无需调用get_partition_for_tuple)         */        if (partdesc->nparts == 0)        {            result = -1;            break;        }        //调用get_partition_for_tuple        cur_index = get_partition_for_tuple(rel, values, isnull);        /*         * cur_index < 0 means we failed to find a partition of this parent.         * cur_index >= 0 means we either found the leaf partition, or the         * next parent to find a partition of.         * cur_index < 0表示未能找到该父节点的分区。         * cur_index >= 0表示要么找到叶子分区,要么找到下一个父分区。         */        if (cur_index < 0)        {            result = -1;            break;//找不到,退出        }        else if (dispatch->indexes[cur_index] >= 0)        {            result = dispatch->indexes[cur_index];            /* success! */            break;//找到了,退出循环        }        else        {            /* move down one level */            //移到下一层查找            dispatch = pd[-dispatch->indexes[cur_index]];            /*             * Release the dedicated slot, if it was used.  Create a copy of             * the tuple first, for the next iteration.             */            if (slot == myslot)            {                tuple = ExecCopySlotTuple(myslot);                ExecClearTuple(myslot);            }        }    }    /* Release the tuple in the lowest parent's dedicated slot. */     //释放位于最低父级的专用的slot相对应的元组。    if (slot == myslot)        ExecClearTuple(myslot);    /* A partition was not found. */    //找不到partition    if (result < 0)    {        char       *val_desc;        val_desc = ExecBuildSlotPartitionKeyDescription(rel,                                                        values, isnull, 64);        Assert(OidIsValid(RelationGetRelid(rel)));        ereport(ERROR,                (errcode(ERRCODE_CHECK_VIOLATION),                 errmsg("no partition of relation \"%s\" found for row",                        RelationGetRelationName(rel)),                 val_desc ? errdetail("Partition key of the failing row contains %s.", val_desc) : 0));    }    MemoryContextSwitchTo(oldcxt);    ecxt->ecxt_scantuple = ecxt_scantuple_old;    return result;}/* * get_partition_for_tuple *      Finds partition of relation which accepts the partition key specified *      in values and isnull * get_partition_for_tuple *      查找参数为values和isnull中指定分区键的关系分区 * * Return value is index of the partition (>= 0 and < partdesc->nparts) if one * found or -1 if none found. * 返回值是分区的索引(>= 0和< partdesc->nparts), *   如果找到一个分区,则返回值;如果没有找到,则返回值为-1。 */static intget_partition_for_tuple(Relation relation, Datum *values, bool *isnull){    int         bound_offset;    int         part_index = -1;    PartitionKey key = RelationGetPartitionKey(relation);    PartitionDesc partdesc = RelationGetPartitionDesc(relation);    PartitionBoundInfo boundinfo = partdesc->boundinfo;    /* Route as appropriate based on partitioning strategy. */    //基于分区的策略进行路由    switch (key->strategy)    {        case PARTITION_STRATEGY_HASH://HASH分区            {                int         greatest_modulus;                uint64      rowHash;                greatest_modulus = get_hash_partition_greatest_modulus(boundinfo);                rowHash = compute_partition_hash_value(key->partnatts,                                                       key->partsupfunc,                                                       values, isnull);                part_index = boundinfo->indexes[rowHash % greatest_modulus];            }            break;        case PARTITION_STRATEGY_LIST://列表分区            if (isnull[0])            {                if (partition_bound_accepts_nulls(boundinfo))                    part_index = boundinfo->null_index;            }            else            {                bool        equal = false;                bound_offset = partition_list_bsearch(key->partsupfunc,                                                      key->partcollation,                                                      boundinfo,                                                      values[0], &equal);                if (bound_offset >= 0 && equal)                    part_index = boundinfo->indexes[bound_offset];            }            break;        case PARTITION_STRATEGY_RANGE://范围分区            {                bool        equal = false,                            range_partkey_has_null = false;                int         i;                /*                 * No range includes NULL, so this will be accepted by the                 * default partition if there is one, and otherwise rejected.                 * 任何范围都不包含NULL值,因此默认分区将接受该值(如果存在),否则将拒绝该值。                 */                for (i = 0; i < key->partnatts; i++)                {                    if (isnull[i])                    {                        range_partkey_has_null = true;                        break;                    }                }                if (!range_partkey_has_null)                {                    bound_offset = partition_range_datum_bsearch(key->partsupfunc,                                                                 key->partcollation,                                                                 boundinfo,                                                                 key->partnatts,                                                                 values,                                                                 &equal);                    /*                     * The bound at bound_offset is less than or equal to the                     * tuple value, so the bound at offset+1 is the upper                     * bound of the partition we're looking for, if there                     * actually exists one.                     * bound_offset的边界小于或等于元组值,所以offset+1的边界是我们要找的分区的上界,如存在的话。                     */                    part_index = boundinfo->indexes[bound_offset + 1];                }            }            break;        default:            elog(ERROR, "unexpected partition strategy: %d",                 (int) key->strategy);//暂不支持其他分区    }    /*     * part_index < 0 means we failed to find a partition of this parent. Use     * the default partition, if there is one.     * part_index < 0表示没有找到这个父节点的分区。如存在分区,则使用默认分区。     */    if (part_index < 0)        part_index = boundinfo->default_index;    return part_index;}

依赖的函数

/* * get_hash_partition_greatest_modulus * * Returns the greatest modulus of the hash partition bound. The greatest * modulus will be at the end of the datums array because hash partitions are * arranged in the ascending order of their moduli and remainders. * 返回哈希分区边界的最大模。 * 最大模量将位于datums数组的末尾,因为哈希分区按照它们的模块和余数的升序排列。 */intget_hash_partition_greatest_modulus(PartitionBoundInfo bound){    Assert(bound && bound->strategy == PARTITION_STRATEGY_HASH);    Assert(bound->datums && bound->ndatums > 0);    Assert(DatumGetInt32(bound->datums[bound->ndatums - 1][0]) > 0);    return DatumGetInt32(bound->datums[bound->ndatums - 1][0]);}/* * compute_partition_hash_value *  * Compute the hash value for given partition key values. * 给定分区键值,计算相应的Hash值 */uint64compute_partition_hash_value(int partnatts, FmgrInfo *partsupfunc,                             Datum *values, bool *isnull){    int         i;    uint64      rowHash = 0;//返回结果    Datum       seed = UInt64GetDatum(HASH_PARTITION_SEED);    for (i = 0; i < partnatts; i++)    {        /* Nulls are just ignored */        if (!isnull[i])        {            //不为NULL            Datum       hash;            Assert(OidIsValid(partsupfunc[i].fn_oid));            /*             * Compute hash for each datum value by calling respective             * datatype-specific hash functions of each partition key             * attribute.             * 通过调用每个分区键属性的特定于数据类型的哈希函数,计算每个数据值的哈希值。             */            hash = FunctionCall2(&partsupfunc[i], values[i], seed);            /* Form a single 64-bit hash value */            //组合成一个单独的64bit哈希值            rowHash = hash_combine64(rowHash, DatumGetUInt64(hash));        }    }    return rowHash;}/* * Combine two 64-bit hash values, resulting in another hash value, using the * same kind of technique as hash_combine().  Testing shows that this also * produces good bit mixing. * 使用与hash_combine()相同的技术组合两个64位哈希值,生成另一个哈希值。 * 测试表明,该方法也能产生良好的混合效果。 */static inline uint64hash_combine64(uint64 a, uint64 b){    /* 0x49a0f4dd15e5a8e3 is 64bit random data */    a ^= b + UINT64CONST(0x49a0f4dd15e5a8e3) + (a << 54) + (a >> 7);    return a;}//两个参数的函数调用宏定义#define FunctionCall2(flinfo, arg1, arg2) \   FunctionCall2Coll(flinfo, InvalidOid, arg1, arg2)

三、跟踪分析

测试脚本如下

-- Hash Partitiondrop table if exists t_hash_partition;create table t_hash_partition (c1 int not null,c2  varchar(40),c3 varchar(40)) partition by hash(c1);create table t_hash_partition_1 partition of t_hash_partition for values with (modulus 6,remainder 0);create table t_hash_partition_2 partition of t_hash_partition for values with (modulus 6,remainder 1);create table t_hash_partition_3 partition of t_hash_partition for values with (modulus 6,remainder 2);create table t_hash_partition_4 partition of t_hash_partition for values with (modulus 6,remainder 3);create table t_hash_partition_5 partition of t_hash_partition for values with (modulus 6,remainder 4);create table t_hash_partition_6 partition of t_hash_partition for values with (modulus 6,remainder 5);insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');

启动gdb,设置断点,进入ExecFindPartition

(gdb) b ExecFindPartitionBreakpoint 1 at 0x6e19e7: file execPartition.c, line 227.(gdb) cContinuing.Breakpoint 1, ExecFindPartition (resultRelInfo=0x14299a8, pd=0x142ae58, slot=0x142a140, estate=0x1429758)    at execPartition.c:227227     ExprContext *ecxt = GetPerTupleExprContext(estate);

初始化变量,切换内存上下文

227     ExprContext *ecxt = GetPerTupleExprContext(estate);(gdb) n228     TupleTableSlot *ecxt_scantuple_old = ecxt->ecxt_scantuple;(gdb) 229     TupleTableSlot *myslot = NULL;(gdb) 234     oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));(gdb) p ecxt_scantuple_old$1 = (TupleTableSlot *) 0x0

提取tuple,获取dispatch

(gdb) n244     tuple = ExecFetchSlotTuple(slot);(gdb) 245     dispatch = pd[0];(gdb) n249         TupleConversionMap *map = dispatch->tupmap;(gdb) p *tuple$2 = {t_len = 40, t_self = {ip_blkid = {bi_hi = 65535, bi_lo = 65535}, ip_posid = 0}, t_tableOid = 0, t_data = 0x142b158}(gdb)

查看分发器dispatch信息

(gdb) p *dispatch$3 = {reldesc = 0x7fbfa6900950, key = 0x1489860, keystate = 0x0, partdesc = 0x149b130, tupslot = 0x0, tupmap = 0x0,   indexes = 0x142ade8}(gdb) p *dispatch->reldesc$4 = {rd_node = {spcNode = 1663, dbNode = 16402, relNode = 16986}, rd_smgr = 0x0, rd_refcnt = 1, rd_backend = -1,   rd_islocaltemp = false, rd_isnailed = false, rd_isvalid = true, rd_indexvalid = 0 '\000', rd_statvalid = false,   rd_createSubid = 0, rd_newRelfilenodeSubid = 0, rd_rel = 0x7fbfa6900b68, rd_att = 0x7fbfa6900c80, rd_id = 16986,   rd_lockInfo = {lockRelId = {relId = 16986, dbId = 16402}}, rd_rules = 0x0, rd_rulescxt = 0x0, trigdesc = 0x0,   rd_rsdesc = 0x0, rd_fkeylist = 0x0, rd_fkeyvalid = false, rd_partkeycxt = 0x1489710, rd_partkey = 0x1489860,   rd_pdcxt = 0x149afe0, rd_partdesc = 0x149b130, rd_partcheck = 0x0, rd_indexlist = 0x0, rd_oidindex = 0, rd_pkindex = 0,   rd_replidindex = 0, rd_statlist = 0x0, rd_indexattr = 0x0, rd_projindexattr = 0x0, rd_keyattr = 0x0, rd_pkattr = 0x0,   rd_idattr = 0x0, rd_projidx = 0x0, rd_pubactions = 0x0, rd_options = 0x0, rd_index = 0x0, rd_indextuple = 0x0,   rd_amhandler = 0, rd_indexcxt = 0x0, rd_amroutine = 0x0, rd_opfamily = 0x0, rd_opcintype = 0x0, rd_support = 0x0,   rd_supportinfo = 0x0, rd_indoption = 0x0, rd_indexprs = 0x0, rd_indpred = 0x0, rd_exclops = 0x0, rd_exclprocs = 0x0,   rd_exclstrats = 0x0, rd_amcache = 0x0, rd_indcollation = 0x0, rd_fdwroutine = 0x0, rd_toastoid = 0, pgstat_info = 0x0}----------------------------------------------------------------------------  testdb=# select relname from pg_class where oid=16986;     relname      ------------------ t_hash_partition -->hash分区表(1 row)----------------------------------------------------------------------------  (gdb) p *dispatch->key$5 = {strategy = 104 'h', partnatts = 1, partattrs = 0x14898f8, partexprs = 0x0, partopfamily = 0x1489918,   partopcintype = 0x1489938, partsupfunc = 0x1489958, partcollation = 0x14899b0, parttypid = 0x14899d0,   parttypmod = 0x14899f0, parttyplen = 0x1489a10, parttypbyval = 0x1489a30,   parttypalign = 0x1489a50 "i~\177\177\177\177\177\177\b", parttypcoll = 0x1489a70}(gdb) p *dispatch->partdesc$6 = {nparts = 6, oids = 0x149b168, boundinfo = 0x149b1a0}(gdb) p *dispatch->partdesc->boundinfo$8 = {strategy = 104 'h', ndatums = 6, datums = 0x149b1f8, kind = 0x0, indexes = 0x149b288, null_index = -1,   default_index = -1}(gdb) p *dispatch->partdesc->boundinfo->datums$9 = (Datum *) 0x149b2c0(gdb) p **dispatch->partdesc->boundinfo->datums$10 = 6(gdb) p *dispatch->indexes$15 = 0

分区描述符中的oids(分别对应t_hash_partition_1->6)

(gdb) p dispatch->partdesc->oids[0]$11 = 16989(gdb) p dispatch->partdesc->oids[1]$12 = 16992...(gdb) p dispatch->partdesc->oids[5]$13 = 17004

索引信息

(gdb) p dispatch->indexes[0]$16 = 0...(gdb) p dispatch->indexes[5]$18 = 5

设置当前索引(-1),获取relation信息,获取分区描述符

(gdb) n250         int         cur_index = -1;(gdb) 252         rel = dispatch->reldesc;(gdb) 253         partdesc = RelationGetPartitionDesc(rel);(gdb) 259         myslot = dispatch->tupslot;(gdb) p *partdesc$19 = {nparts = 6, oids = 0x149b168, boundinfo = 0x149b1a0}(gdb)

myslot为NULL

(gdb) n260         if (myslot != NULL && map != NULL)(gdb) p myslot$20 = (TupleTableSlot *) 0x0

从元组中提取分区键

(gdb) n275         ecxt->ecxt_scantuple = slot;(gdb) 276         FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);(gdb) 282         if (partdesc->nparts == 0)(gdb) p *partdesc$21 = {nparts = 6, oids = 0x149b168, boundinfo = 0x149b1a0}(gdb) p *slot$22 = {type = T_TupleTableSlot, tts_isempty = false, tts_shouldFree = true, tts_shouldFreeMin = false, tts_slow = false,   tts_tuple = 0x142b140, tts_tupleDescriptor = 0x1429f28, tts_mcxt = 0x1429640, tts_buffer = 0, tts_nvalid = 1,   tts_values = 0x142a1a0, tts_isnull = 0x142a1b8, tts_mintuple = 0x0, tts_minhdr = {t_len = 0, t_self = {ip_blkid = {        bi_hi = 0, bi_lo = 0}, ip_posid = 0}, t_tableOid = 0, t_data = 0x0}, tts_off = 4, tts_fixedTupleDescriptor = true}(gdb) p values$23 = {0, 7152626, 21144656, 21144128, 7141053, 21143088, 21144128, 16372128, 140722434628688, 0, 0, 0, 21143872,   140722434628736, 140461078524324, 21141056, 21144128, 0, 21143088, 21141056, 7152279, 0, 7421941, 21141056, 21143088,   21614576, 140722434628800, 7422189, 21143872, 140722434628839, 21143088, 21144128}(gdb) p isnull$24 = {false, 91, 186, 126, 252, 127, false, false, 208, 166, 71, false, false, false, false, false, 2,   false }(gdb) p *estate$25 = {type = T_EState, es_direction = ForwardScanDirection, es_snapshot = 0x1451ee0, es_crosscheck_snapshot = 0x0,   es_range_table = 0x14a71c0, es_plannedstmt = 0x14a72b8,   es_sourceText = 0x13acec8 "insert into t_hash_partition(c1,c2,c3) VALUES(0,'HASH0','HAHS0');", es_junkFilter = 0x0,   es_output_cid = 0, es_result_relations = 0x14299a8, es_num_result_relations = 1, es_result_relation_info = 0x14299a8,   es_root_result_relations = 0x0, es_num_root_result_relations = 0, es_tuple_routing_result_relations = 0x0,   es_trig_target_relations = 0x0, es_trig_tuple_slot = 0x142afc0, es_trig_oldtup_slot = 0x0, es_trig_newtup_slot = 0x0,   es_param_list_info = 0x0, es_param_exec_vals = 0x1429970, es_queryEnv = 0x0, es_query_cxt = 0x1429640,   es_tupleTable = 0x142a200, es_rowMarks = 0x0, es_processed = 0, es_lastoid = 0, es_top_eflags = 0, es_instrument = 0,   es_finished = false, es_exprcontexts = 0x1429ef0, es_subplanstates = 0x0, es_auxmodifytables = 0x0,   es_per_tuple_exprcontext = 0x142b080, es_epqTuple = 0x0, es_epqTupleSet = 0x0, es_epqScanDone = 0x0,   es_use_parallel_mode = false, es_query_dsa = 0x0, es_jit_flags = 0, es_jit = 0x0, es_jit_worker_instr = 0x0}(gdb)

进入get_partition_for_tuple函数

(gdb) n288         cur_index = get_partition_for_tuple(rel, values, isnull);(gdb) stepget_partition_for_tuple (relation=0x7fbfa6900950, values=0x7ffc7eba5bb0, isnull=0x7ffc7eba5b90) at execPartition.c:11391139        int         part_index = -1;(gdb)

get_partition_for_tuple->获取分区键

1139        int         part_index = -1;(gdb) n1140        PartitionKey key = RelationGetPartitionKey(relation);(gdb) 1141        PartitionDesc partdesc = RelationGetPartitionDesc(relation);(gdb) p key$26 = (PartitionKey) 0x1489860(gdb) p *key$27 = {strategy = 104 'h', partnatts = 1, partattrs = 0x14898f8, partexprs = 0x0, partopfamily = 0x1489918,   partopcintype = 0x1489938, partsupfunc = 0x1489958, partcollation = 0x14899b0, parttypid = 0x14899d0,   parttypmod = 0x14899f0, parttyplen = 0x1489a10, parttypbyval = 0x1489a30,   parttypalign = 0x1489a50 "i~\177\177\177\177\177\177\b", parttypcoll = 0x1489a70}

get_partition_for_tuple->获取分区描述符&分区边界信息

(gdb) n1142        PartitionBoundInfo boundinfo = partdesc->boundinfo;(gdb) 1145        switch (key->strategy)(gdb) p *partdesc$28 = {nparts = 6, oids = 0x149b168, boundinfo = 0x149b1a0}(gdb) p *boundinfo$29 = {strategy = 104 'h', ndatums = 6, datums = 0x149b1f8, kind = 0x0, indexes = 0x149b288, null_index = -1,   default_index = -1}

get_partition_for_tuple->进入Hash分区处理分支

(gdb) n1152                    greatest_modulus = get_hash_partition_greatest_modulus(boundinfo);(gdb) p key->strategy$30 = 104 'h'

get_partition_for_tuple->计算模块数&行hash值,获得分区编号(index)

(gdb) n1153                    rowHash = compute_partition_hash_value(key->partnatts,(gdb) n1157                    part_index = boundinfo->indexes[rowHash % greatest_modulus];(gdb) 1159                break;(gdb) p part_index$31 = 2(gdb)

get_partition_for_tuple->返回

(gdb) n1228        if (part_index < 0)(gdb) 1231        return part_index;(gdb) 1232    }(gdb) ExecFindPartition (resultRelInfo=0x14299a8, pd=0x142ae58, slot=0x142a140, estate=0x1429758) at execPartition.c:295295         if (cur_index < 0)(gdb)

已取得分区信息(分区索引编号=2)

(gdb) n300         else if (dispatch->indexes[cur_index] >= 0)(gdb) 302             result = dispatch->indexes[cur_index];(gdb) p dispatch->indexes[cur_index]$32 = 2(gdb) n304             break;(gdb) 324     if (slot == myslot)(gdb) 328     if (result < 0)(gdb) 342     MemoryContextSwitchTo(oldcxt);(gdb) 343     ecxt->ecxt_scantuple = ecxt_scantuple_old;(gdb) 345     return result;(gdb)

完成函数调用

(gdb) n346 }(gdb) ExecPrepareTupleRouting (mtstate=0x1429ac0, estate=0x1429758, proute=0x142a7a8, targetRelInfo=0x14299a8, slot=0x142a140)    at nodeModifyTable.c:17161716        Assert(partidx >= 0 && partidx < proute->num_partitions);

"PostgreSQL中哪个函数为heap tuple找到合适的分区"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!

0