千家信息网

PostgreSQL中query_planner函数的处理逻辑分析

发表于:2025-11-13 作者:千家信息网编辑
千家信息网最后更新 2025年11月13日,这篇文章主要介绍"PostgreSQL中query_planner函数的处理逻辑分析",在日常操作中,相信很多人在PostgreSQL中query_planner函数的处理逻辑分析问题上存在疑惑,小编
千家信息网最后更新 2025年11月13日PostgreSQL中query_planner函数的处理逻辑分析

这篇文章主要介绍"PostgreSQL中query_planner函数的处理逻辑分析",在日常操作中,相信很多人在PostgreSQL中query_planner函数的处理逻辑分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"PostgreSQL中query_planner函数的处理逻辑分析"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

一、重要的数据结构

RelOptInfo
查询语句经过查询重写/表达式简化/外连接消除等处理后,查询树Query已完成规范化,查询树中的RangeTblEntry(RTE)数据结构已完成其历史使命,由此可进入逻辑优化处理,在此阶段使用RelOptInfo数据结构.

 typedef enum RelOptKind {     RELOPT_BASEREL,//基本关系(如基表/子查询等)     RELOPT_JOINREL,//连接产生的关系,要注意的是通过连接等方式产生的结果亦可以视为关系     RELOPT_OTHER_MEMBER_REL,     RELOPT_OTHER_JOINREL,     RELOPT_UPPER_REL,//上层的关系     RELOPT_OTHER_UPPER_REL,     RELOPT_DEADREL } RelOptKind;  /*  * Is the given relation a simple relation i.e a base or "other" member  * relation?  */ #define IS_SIMPLE_REL(rel) \     ((rel)->reloptkind == RELOPT_BASEREL || \      (rel)->reloptkind == RELOPT_OTHER_MEMBER_REL)  /* Is the given relation a join relation? */ #define IS_JOIN_REL(rel)    \     ((rel)->reloptkind == RELOPT_JOINREL || \      (rel)->reloptkind == RELOPT_OTHER_JOINREL)  /* Is the given relation an upper relation? */ #define IS_UPPER_REL(rel)   \     ((rel)->reloptkind == RELOPT_UPPER_REL || \      (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)  /* Is the given relation an "other" relation? */ #define IS_OTHER_REL(rel) \     ((rel)->reloptkind == RELOPT_OTHER_MEMBER_REL || \      (rel)->reloptkind == RELOPT_OTHER_JOINREL || \      (rel)->reloptkind == RELOPT_OTHER_UPPER_REL)  typedef struct RelOptInfo {     NodeTag     type;//节点标识      RelOptKind  reloptkind;//RelOpt类型      /* all relations included in this RelOptInfo */     Relids      relids;         /*Relids(rtindex)集合 set of base relids (rangetable indexes) */      /* size estimates generated by planner */     double      rows;           /*结果元组的估算数量 estimated number of result tuples */      /* per-relation planner control flags */     bool        consider_startup;   /*是否考虑启动成本?是,需要保留启动成本低的路径 keep cheap-startup-cost paths? */     bool        consider_param_startup; /*是否考虑参数化?的路径 ditto, for parameterized paths? */     bool        consider_parallel;  /*是否考虑并行处理路径 consider parallel paths? */      /* default result targetlist for Paths scanning this relation */     struct PathTarget *reltarget;   /*扫描该Relation时默认的结果 list of Vars/Exprs, cost, width */      /* materialization information */     List       *pathlist;       /*访问路径链表 Path structures */     List       *ppilist;        /*路径链表中使用参数化路径进行 ParamPathInfos used in pathlist */     List       *partial_pathlist;   /* partial Paths */     struct Path *cheapest_startup_path;//代价最低的启动路径     struct Path *cheapest_total_path;//代价最低的整体路径     struct Path *cheapest_unique_path;//代价最低的获取唯一值的路径     List       *cheapest_parameterized_paths;//代价最低的参数化?路径链表      /* parameterization information needed for both base rels and join rels */     /* (see also lateral_vars and lateral_referencers) */     Relids      direct_lateral_relids;  /*使用lateral语法,需依赖的Relids rels directly laterally referenced */     Relids      lateral_relids; /* minimum parameterization of rel */      /* information about a base rel (not set for join rels!) */   //reloptkind=RELOPT_BASEREL时使用的数据结构     Index       relid;      /* Relation ID */     Oid         reltablespace;  /* 表空间 containing tablespace */     RTEKind     rtekind;        /* 基表?子查询?还是函数等等?RELATION, SUBQUERY, FUNCTION, etc */     AttrNumber  min_attr;       /* 最小的属性编号 smallest attrno of rel (often <0) */     AttrNumber  max_attr;       /* 最大的属性编号 largest attrno of rel */     Relids     *attr_needed;    /* 数组 array indexed [min_attr .. max_attr] */     int32      *attr_widths;    /* 属性宽度 array indexed [min_attr .. max_attr] */     List       *lateral_vars;   /* 关系依赖的Vars/PHVs LATERAL Vars and PHVs referenced by rel */     Relids      lateral_referencers;    /*依赖该关系的Relids rels that reference me laterally */     List       *indexlist;      /* 该关系的IndexOptInfo链表 list of IndexOptInfo */     List       *statlist;       /* 统计信息链表 list of StatisticExtInfo */     BlockNumber pages;          /* 块数 size estimates derived from pg_class */     double      tuples;     /* 元组数 */     double      allvisfrac;   /* ? */     PlannerInfo *subroot;       /* 如为子查询,存储子查询的root if subquery */     List       *subplan_params; /* 如为子查询,存储子查询的参数 if subquery */     int         rel_parallel_workers;   /* 并行执行,需要多少个workers? wanted number of parallel workers */      /* Information about foreign tables and foreign joins */   //FWD相关信息     Oid         serverid;       /* identifies server for the table or join */     Oid         userid;         /* identifies user to check access as */     bool        useridiscurrent;    /* join is only valid for current user */     /* use "struct FdwRoutine" to avoid including fdwapi.h here */     struct FdwRoutine *fdwroutine;     void       *fdw_private;      /* cache space for remembering if we have proven this relation unique */   //已知的,可保证唯一的Relids链表     List       *unique_for_rels;    /* known unique for these other relid                                      * set(s) */     List       *non_unique_for_rels;    /* 已知的,不唯一的Relids链表 known not unique for these set(s) */      /* used by various scans and joins: */     List       *baserestrictinfo;   /* 如为基本关系,存储约束条件 RestrictInfo structures (if base rel) */     QualCost    baserestrictcost;   /* 解析约束表达式的成本? cost of evaluating the above */     Index       baserestrict_min_security;  /* 最低安全等级 min security_level found in                                              * baserestrictinfo */     List       *joininfo;       /* 连接语句的约束条件信息 RestrictInfo structures for join clauses                                  * involving this rel */     bool        has_eclass_joins;   /* 是否存在等价类连接? T means joininfo is incomplete */      /* used by partitionwise joins: */     bool        consider_partitionwise_join;    /* 分区? consider partitionwise                                                  * join paths? (if                                                  * partitioned rel) */     Relids      top_parent_relids;  /* Relids of topmost parents (if "other"                                      * rel) */      /* used for partitioned relations */   //分区表使用     PartitionScheme part_scheme;    /* 分区的schema Partitioning scheme. */     int         nparts;         /* 分区数 number of partitions */     struct PartitionBoundInfoData *boundinfo;   /* 分区边界信息 Partition bounds */     List       *partition_qual; /* 分区约束 partition constraint */     struct RelOptInfo **part_rels;  /* 分区的RelOptInfo数组 Array of RelOptInfos of partitions,                                      * stored in the same order of bounds */     List      **partexprs;      /* 非空分区键表达式 Non-nullable partition key expressions. */     List      **nullable_partexprs; /* 可为空的分区键表达式 Nullable partition key expressions. */     List       *partitioned_child_rels; /* RT Indexes链表 List of RT indexes. */ } RelOptInfo;

PathCostComparison

 typedef enum {     COSTS_EQUAL,                /* 近似相等 path costs are fuzzily equal */     COSTS_BETTER1,              /* 第一个路径成本较低 first path is cheaper than second */     COSTS_BETTER2,              /* 第二个相对较低 second path is cheaper than first */     COSTS_DIFFERENT             /* 不管是哪个路径,成本上都不占优势 neither path dominates the other on cost */ } PathCostComparison;

ResultPath

 /*  * ResultPath represents use of a Result plan node to compute a variable-free  * targetlist with no underlying tables (a "SELECT expressions" query).  * The query could have a WHERE clause, too, represented by "quals".  *  * Note that quals is a list of bare clauses, not RestrictInfos.  */ typedef struct ResultPath //表示无基础表的结果计划节点 {     Path        path;//扫描路径     List       *quals;//where语句表达式,bare clauses, not RestrictInfos } ResultPath;

二、源码解读

 /*  * query_planner  *    Generate a path (that is, a simplified plan) for a basic query,  *    which may involve joins but not any fancier features.  *  * 为一个基本的查询(可能涉及连接)生成访问路径(也可以视为一个简化的计划).  *  * Since query_planner does not handle the toplevel processing (grouping,  * sorting, etc) it cannot select the best path by itself.  Instead, it  * returns the RelOptInfo for the top level of joining, and the caller  * (grouping_planner) can choose among the surviving paths for the rel.  *  * query_planner不会处理顶层的处理过程(如最后的分组/排序等操作),因此,不能选择最优的访问路径  * 该函数会返回RelOptInfo给最高层的连接,grouping_planner可以在剩下的路径中进行选择  *  * root describes the query to plan  * tlist is the target list the query should produce  *      (this is NOT necessarily root->parse->targetList!)  * qp_callback is a function to compute query_pathkeys once it's safe to do so  * qp_extra is optional extra data to pass to qp_callback  *  * root是计划信息/tlist是投影列  * qp_callback是计算query_pathkeys的函数/qp_extra是传递给qp_callback的函数  *  * Note: the PlannerInfo node also includes a query_pathkeys field, which  * tells query_planner the sort order that is desired in the final output  * plan.  This value is *not* available at call time, but is computed by  * qp_callback once we have completed merging the query's equivalence classes.  * (We cannot construct canonical pathkeys until that's done.)  */ RelOptInfo * query_planner(PlannerInfo *root, List *tlist,               query_pathkeys_callback qp_callback, void *qp_extra) {     Query      *parse = root->parse;//查询树     List       *joinlist;     RelOptInfo *final_rel;//结果     Index       rti;//RTE的index     double      total_pages;//总pages数      /*      * If the query has an empty join tree, then it's something easy like      * "SELECT 2+2;" or "INSERT ... VALUES()".  Fall through quickly.      */     if (parse->jointree->fromlist == NIL)//简单SQL,无FROM/WHERE语句     {         /* We need a dummy joinrel to describe the empty set of baserels */         final_rel = build_empty_join_rel(root);//创建返回结果          /*          * If query allows parallelism in general, check whether the quals are          * parallel-restricted.  (We need not check final_rel->reltarget          * because it's empty at this point.  Anything parallel-restricted in          * the query tlist will be dealt with later.)          */         if (root->glob->parallelModeOK)//并行模式?             final_rel->consider_parallel =                 is_parallel_safe(root, parse->jointree->quals);          /* The only path for it is a trivial Result path */         add_path(final_rel, (Path *)                  create_result_path(root, final_rel,                                     final_rel->reltarget,                                     (List *) parse->jointree->quals));//添加访问路径          /* Select cheapest path (pretty easy in this case...) */         set_cheapest(final_rel);//选择最优的访问路径          /*          * We still are required to call qp_callback, in case it's something          * like "SELECT 2+2 ORDER BY 1".          */         root->canon_pathkeys = NIL;         (*qp_callback) (root, qp_extra);//回调函数          return final_rel;//返回     }      //其他代码     ... }

add_path/set_cheapest
后续再行介绍

create_result_path

 /*  * create_result_path  *    Creates a path representing a Result-and-nothing-else plan.  *  * This is only used for degenerate cases, such as a query with an empty  * jointree.  */ ResultPath * create_result_path(PlannerInfo *root, RelOptInfo *rel,                    PathTarget *target, List *resconstantqual) {     ResultPath *pathnode = makeNode(ResultPath);//结果      pathnode->path.pathtype = T_Result;//扫描路径类型     pathnode->path.parent = rel;//路径的partentbuild_empty_join_rel     pathnode->path.pathtarget = target;//目标列     pathnode->path.param_info = NULL;   /* there are no other rels... */     pathnode->path.parallel_aware = false;     pathnode->path.parallel_safe = rel->consider_parallel;     pathnode->path.parallel_workers = 0;//并行workers数目,设置为0     pathnode->path.pathkeys = NIL;//     pathnode->quals = resconstantqual;//表达式      /* Hardly worth defining a cost_result() function ... just do it */     pathnode->path.rows = 1;//行数为1     pathnode->path.startup_cost = target->cost.startup;     pathnode->path.total_cost = target->cost.startup +         cpu_tuple_cost + target->cost.per_tuple;      /*      * Add cost of qual, if any --- but we ignore its selectivity, since our      * rowcount estimate should be 1 no matter what the qual is.      */     if (resconstantqual)     {         QualCost    qual_cost;          cost_qual_eval(&qual_cost, resconstantqual, root);         /* resconstantqual is evaluated once at startup */         pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;         pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;     }      return pathnode; }

build_empty_join_rel

/*  * build_empty_join_rel  *      Build a dummy join relation describing an empty set of base rels.  *  * This is used for queries with empty FROM clauses, such as "SELECT 2+2" or  * "INSERT INTO foo VALUES(...)".  We don't try very hard to make the empty  * joinrel completely valid, since no real planning will be done with it ---  * we just need it to carry a simple Result path out of query_planner().  */ RelOptInfo * build_empty_join_rel(PlannerInfo *root) {     RelOptInfo *joinrel;      /* The dummy join relation should be the only one ... */     Assert(root->join_rel_list == NIL);      joinrel = makeNode(RelOptInfo);     joinrel->reloptkind = RELOPT_JOINREL;     joinrel->relids = NULL;     /* empty set */     joinrel->rows = 1;          /* we produce one row for such cases */     joinrel->rtekind = RTE_JOIN;     joinrel->reltarget = create_empty_pathtarget();      root->join_rel_list = lappend(root->join_rel_list, joinrel);      return joinrel; }

三、跟踪分析

(gdb) b query_plannerBreakpoint 1 at 0x76942c: file planmain.c, line 57.(gdb) cContinuing.Breakpoint 1, query_planner (root=0x275c878, tlist=0x277fd78, qp_callback=0x76e97d ,     qp_extra=0x7ffdd435d490) at planmain.c:5757    Query    *parse = root->parse;(gdb) n67    if (parse->jointree->fromlist == NIL)(gdb) 70      final_rel = build_empty_join_rel(root);(gdb) 78      if (root->glob->parallelModeOK)#创建的空RELOPT_JOINREL(gdb) p *final_rel$4 = {type = T_RelOptInfo, reloptkind = RELOPT_JOINREL, relids = 0x0, rows = 1, consider_startup = false,   consider_param_startup = false, consider_parallel = false, reltarget = 0x277fda8, pathlist = 0x0, ppilist = 0x0,   partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0,   cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 0, reltablespace = 0,   rtekind = RTE_JOIN, min_attr = 0, max_attr = 0, attr_needed = 0x0, attr_widths = 0x0, lateral_vars = 0x0,   lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 0, tuples = 0, allvisfrac = 0, subroot = 0x0,   subplan_params = 0x0, rel_parallel_workers = 0, serverid = 0, userid = 0, useridiscurrent = false, fdwroutine = 0x0,   fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0, baserestrictcost = {    startup = 0, per_tuple = 0}, baserestrict_min_security = 0, joininfo = 0x0, has_eclass_joins = false,   top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, part_rels = 0x0,   partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}...(gdb) stepadd_path (parent_rel=0x275cc88, new_path=0x275c498) at pathnode.c:424424   bool    accept_new = true;  /* unless we find a superior old path */#创建的path(ResultPath)(gdb) p *new_path$6 = {type = T_ResultPath, pathtype = T_Result, parent = 0x275cc88, pathtarget = 0x277fda8, param_info = 0x0,   parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 1, startup_cost = 0, total_cost = 0.01,   pathkeys = 0x0}(gdb) finishRun till exit from #0  add_path (parent_rel=0x275cc88, new_path=0x275c498) at pathnode.c:425query_planner (root=0x275c878, tlist=0x277fd78, qp_callback=0x76e97d , qp_extra=0x7ffdd435d490)    at planmain.c:8989      set_cheapest(final_rel);...98      return final_rel;(gdb) 267 }#返回值(gdb) p *final_rel$8 = {type = T_RelOptInfo, reloptkind = RELOPT_JOINREL, relids = 0x0, rows = 1, consider_startup = false,   consider_param_startup = false, consider_parallel = true, reltarget = 0x277fda8, pathlist = 0x277fe68, ppilist = 0x0,   partial_pathlist = 0x0, cheapest_startup_path = 0x275c498, cheapest_total_path = 0x275c498, cheapest_unique_path = 0x0,   cheapest_parameterized_paths = 0x277feb8, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 0,   reltablespace = 0, rtekind = RTE_JOIN, min_attr = 0, max_attr = 0, attr_needed = 0x0, attr_widths = 0x0,   lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 0, tuples = 0, allvisfrac = 0,   subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = 0, serverid = 0, userid = 0, useridiscurrent = false,   fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0,   baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 0, joininfo = 0x0, has_eclass_joins = false,   top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, part_rels = 0x0,   partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}(gdb) p *final_rel->cheapest_total_path$9 = {type = T_ResultPath, pathtype = T_Result, parent = 0x275cc88, pathtarget = 0x277fda8, param_info = 0x0,   parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 1, startup_cost = 0, total_cost = 0.01,   pathkeys = 0x0}(gdb) #DONE!

到此,关于"PostgreSQL中query_planner函数的处理逻辑分析"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!

0