Python如何破解滑动验证码
发表于:2025-11-14 作者:千家信息网编辑
千家信息网最后更新 2025年11月14日,这篇文章主要介绍了Python如何破解滑动验证码的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Python如何破解滑动验证码文章都会有所收获,下面我们一起来看看吧。滑动验
千家信息网最后更新 2025年11月14日Python如何破解滑动验证码
这篇文章主要介绍了Python如何破解滑动验证码的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Python如何破解滑动验证码文章都会有所收获,下面我们一起来看看吧。
滑动验证码破解思路
对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤
1、输入用户名,密码
2、点击按钮验证,弹出没有缺口的图
3、获得没有缺口的图片
4、点击滑动按钮,弹出有缺口的图
5、获得有缺口的图片
6、对比两张图片,找出缺口,即滑动的位移
7、按照人的行为行为习惯,把总位移切成一段段小的位移
8、按照位移移动
9、完成登录
实现
位移移动的代码实现
def get_track(distance): ''' 拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速 匀变速运动基本公式: ①v=v0+at ②s=v0t+(1/2)at² ③v²-v0²=2as :param distance: 需要移动的距离 :return: 存放每0.2秒移动的距离 ''' # 初速度 v=0 # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移 t=0.1 # 位移/轨迹列表,列表内的一个元素代表0.2s的位移 tracks=[] # 当前的位移 current=0 # 到达mid值开始减速 mid=distance * 4/5 distance += 10 # 先滑过一点,最后再反着滑动回来 while current < distance: if current < mid: # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细 a = 2 # 加速运动 else: a = -3 # 减速运动 # 初速度 v0 = v # 0.2秒时间内的位移 s = v0*t+0.5*a*(t**2) # 当前的位置 current += s # 添加到轨迹列表 tracks.append(round(s)) # 速度已经达到v,该速度作为下次的初速度 v= v0+a*t # 反着滑动到大概准确位置 for i in range(3): tracks.append(-2) for i in range(4): tracks.append(-1) return tracks对比两张图片,找出缺口
def get_distance(image1,image2): ''' 拿到滑动验证码需要移动的距离 :param image1:没有缺口的图片对象 :param image2:带缺口的图片对象 :return:需要移动的距离 ''' # print('size', image1.size) threshold = 50 for i in range(0,image1.size[0]): # 260 for j in range(0,image1.size[1]): # 160 pixel1 = image1.getpixel((i,j)) pixel2 = image2.getpixel((i,j)) res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差 res_G = abs(pixel1[1] - pixel2[1]) # 计算RGB差 res_B = abs(pixel1[2] - pixel2[2]) # 计算RGB差 if res_R > threshold and res_G > threshold and res_B > threshold: return i # 需要移动的距离获得图片
def merge_image(image_file,location_list): """ 拼接图片 :param image_file: :param location_list: :return: """ im = Image.open(image_file) im.save('code.jpg') new_im = Image.new('RGB',(260,116)) # 把无序的图片 切成52张小图片 im_list_upper = [] im_list_down = [] # print(location_list) for location in location_list: # print(location['y']) if location['y'] == -58: # 上半边 im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116))) if location['y'] == 0: # 下半边 im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58))) x_offset = 0 for im in im_list_upper: new_im.paste(im,(x_offset,0)) # 把小图片放到 新的空白图片上 x_offset += im.size[0] x_offset = 0 for im in im_list_down: new_im.paste(im,(x_offset,58)) x_offset += im.size[0] new_im.show() return new_imdef get_image(driver,div_path): ''' 下载无序的图片 然后进行拼接 获得完整的图片 :param driver: :param div_path: :return: ''' time.sleep(2) background_images = driver.find_elements_by_xpath(div_path) location_list = [] for background_image in background_images: location = {} result = re.findall('background-image: url("(.*?)"); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style')) # print(result) location['x'] = int(result[0][1]) location['y'] = int(result[0][2]) image_url = result[0][0] location_list.append(location) print('==================================') image_url = image_url.replace('webp','jpg') # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp' image_result = requests.get(image_url).content # with open('1.jpg','wb') as f: # f.write(image_result) image_file = BytesIO(image_result) # 是一张无序的图片 image = merge_image(image_file,location_list) return image按照位移移动
print('第一步,点击滑动按钮') ActionChains(driver).click_and_hold(on_element=element).perform() # 点击鼠标左键,按住不放 time.sleep(1) print('第二步,拖动元素') for track in track_list: ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y) if l<100: ActionChains(driver).move_by_offset(xoffset=-2, yoffset=0).perform() else: ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform() time.sleep(1) print('第三步,释放鼠标') ActionChains(driver).release(on_element=element).perform()详细代码
from selenium import webdriverfrom selenium.webdriver.support.ui import WebDriverWait # 等待元素加载的from selenium.webdriver.common.action_chains import ActionChains #拖拽from selenium.webdriver.support import expected_conditions as ECfrom selenium.common.exceptions import TimeoutException, NoSuchElementExceptionfrom selenium.webdriver.common.by import Byfrom PIL import Imageimport requestsimport timeimport reimport randomfrom io import BytesIOdef merge_image(image_file,location_list): """ 拼接图片 :param image_file: :param location_list: :return: """ im = Image.open(image_file) im.save('code.jpg') new_im = Image.new('RGB',(260,116)) # 把无序的图片 切成52张小图片 im_list_upper = [] im_list_down = [] # print(location_list) for location in location_list: # print(location['y']) if location['y'] == -58: # 上半边 im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116))) if location['y'] == 0: # 下半边 im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58))) x_offset = 0 for im in im_list_upper: new_im.paste(im,(x_offset,0)) # 把小图片放到 新的空白图片上 x_offset += im.size[0] x_offset = 0 for im in im_list_down: new_im.paste(im,(x_offset,58)) x_offset += im.size[0] new_im.show() return new_imdef get_image(driver,div_path): ''' 下载无序的图片 然后进行拼接 获得完整的图片 :param driver: :param div_path: :return: ''' time.sleep(2) background_images = driver.find_elements_by_xpath(div_path) location_list = [] for background_image in background_images: location = {} result = re.findall('background-image: url("(.*?)"); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style')) # print(result) location['x'] = int(result[0][1]) location['y'] = int(result[0][2]) image_url = result[0][0] location_list.append(location) print('==================================') image_url = image_url.replace('webp','jpg') # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp' image_result = requests.get(image_url).content # with open('1.jpg','wb') as f: # f.write(image_result) image_file = BytesIO(image_result) # 是一张无序的图片 image = merge_image(image_file,location_list) return imagedef get_track(distance): ''' 拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速 匀变速运动基本公式: ①v=v0+at ②s=v0t+(1/2)at² ③v²-v0²=2as :param distance: 需要移动的距离 :return: 存放每0.2秒移动的距离 ''' # 初速度 v=0 # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移 t=0.2 # 位移/轨迹列表,列表内的一个元素代表0.2s的位移 tracks=[] # 当前的位移 current=0 # 到达mid值开始减速 mid=distance * 7/8 distance += 10 # 先滑过一点,最后再反着滑动回来 # a = random.randint(1,3) while current < distance: if current < mid: # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细 a = random.randint(2,4) # 加速运动 else: a = -random.randint(3,5) # 减速运动 # 初速度 v0 = v # 0.2秒时间内的位移 s = v0*t+0.5*a*(t**2) # 当前的位置 current += s # 添加到轨迹列表 tracks.append(round(s)) # 速度已经达到v,该速度作为下次的初速度 v= v0+a*t # 反着滑动到大概准确位置 for i in range(4): tracks.append(-random.randint(2,3)) for i in range(4): tracks.append(-random.randint(1,3)) return tracksdef get_distance(image1,image2): ''' 拿到滑动验证码需要移动的距离 :param image1:没有缺口的图片对象 :param image2:带缺口的图片对象 :return:需要移动的距离 ''' # print('size', image1.size) threshold = 50 for i in range(0,image1.size[0]): # 260 for j in range(0,image1.size[1]): # 160 pixel1 = image1.getpixel((i,j)) pixel2 = image2.getpixel((i,j)) res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差 res_G = abs(pixel1[1] - pixel2[1]) # 计算RGB差 res_B = abs(pixel1[2] - pixel2[2]) # 计算RGB差 if res_R > threshold and res_G > threshold and res_B > threshold: return i # 需要移动的距离def main_check_code(driver, element): """ 拖动识别验证码 :param driver: :param element: :return: """ image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div') image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div') # 图片上 缺口的位置的x坐标 # 2 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离 l = get_distance(image1, image2) print('l=',l) # 3 获得移动轨迹 track_list = get_track(l) print('第一步,点击滑动按钮') ActionChains(driver).click_and_hold(on_element=element).perform() # 点击鼠标左键,按住不放 time.sleep(1) print('第二步,拖动元素') for track in track_list: ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y) time.sleep(0.002) # if l>100: ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform() time.sleep(1) print('第三步,释放鼠标') ActionChains(driver).release(on_element=element).perform() time.sleep(5)def main_check_slider(driver): """ 检查滑动按钮是否加载 :param driver: :return: """ while True: try : driver.get('http://www.cnbaowen.net/api/geetest/') element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob'))) if element: return element except TimeoutException as e: print('超时错误,继续') time.sleep(5)if __name__ == '__main__': try: count = 6 # 最多识别6次 driver = webdriver.Chrome() # 等待滑动按钮加载完成 element = main_check_slider(driver) while count > 0: main_check_code(driver,element) time.sleep(2) try: success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success') # 得到成功标志 print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success')) success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element)) if success_images: print('成功识别!!!!!!') count = 0 break except NoSuchElementException as e: print('识别错误,继续') count -= 1 time.sleep(2) else: print('too many attempt check code ') exit('退出程序') finally: driver.close()关于"Python如何破解滑动验证码"这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对"Python如何破解滑动验证码"知识都有一定的了解,大家如果还想学习更多知识,欢迎关注行业资讯频道。
图片
移动
轨迹
验证
缺口
按钮
速度
鼠标
位置
元素
半边
时间
行为
运动
单位
知识
切成
成功
变速运动
代码
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
江阴软件开发服务至上
登录电脑管理服务器
看板可以让软件开发过程
c 软件开发框架
新形势下网络安全管理
关注网络安全人人有责
闵行区智能化软件开发定制哪个好
软件开发宣传技术
比利时网络安全透明中心
锐捷 数据库 提取
南充软件开发规定
sql数据库 空库导入
淘宝 代理服务器
数据库初步设计
融媒体中心网络安全应急预案简报
互联网焦点科技
网络安全诈骗作文
数据库模块设计方案
医院预约系统软件开发计划
网络安全 运维 资质
软件开发真的很快吗
大连理工大学网络安全实验室
夺宝软件开发费用
导出恢复mysql数据库
软件开发者职业生涯指南作者
软件开发短期工
软件开发 评标
水利网络安全法
披萨连接不上服务器
最小的关系型数据库