千家信息网

Java对象内存布局实例分析

发表于:2025-11-06 作者:千家信息网编辑
千家信息网最后更新 2025年11月06日,这篇文章主要介绍了Java对象内存布局实例分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Java对象内存布局实例分析文章都会有所收获,下面我们一起来看看吧。文中代码基
千家信息网最后更新 2025年11月06日Java对象内存布局实例分析

这篇文章主要介绍了Java对象内存布局实例分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Java对象内存布局实例分析文章都会有所收获,下面我们一起来看看吧。

文中代码基于 JDK 1.8.0_261,64-Bit HotSpot 运行

1、对象内存结构概述

在介绍对象在内存中的组成结构前,我们先简要回顾一个对象的创建过程:

1、jvm 将对象所在的class文件加载到方法区中

2、jvm 读取main方法入口,将main方法入栈,执行创建对象代码

3、在main方法的栈内存中分配对象的引用,在堆中分配内存放入创建的对象,并将栈中的引用指向堆中的对象

所以当对象在实例化完成之后,是被存放在堆内存中的,这里的对象由 3 部分组成,如下图所示:

对各个组成部分的功能简要进行说明:

  • 对象头:对象头存储的是对象在运行时状态的相关信息、指向该对象所属类的元数据的指针,如果对象是数组对象那么还会额外存储对象的数组长度

  • 实例数据:实例数据存储的是对象的真正有效数据,也就是各个属性字段的值,如果在拥有父类的情况下,还会包含父类的字段。字段的存储顺序会受到数据类型长度、以及虚拟机的分配策略的影响

  • 对齐填充字节:在 java 对象中,需要对齐填充字节的原因是,64 位的 jvm 中对象的大小被要求向8字节对齐,因此当对象的长度不足8字节的整数倍时,需要在对象中进行填充操作。注意图中对齐填充部分使用了虚线,这是因为填充字节并不是固定存在的部分,这点在后面计算对象大小时具体进行说明

2、JOL 工具简介

在具体开始研究对象的内存结构之前,先介绍一下我们要用到的工具,openjdk官网提供了查看对象内存布局的工具jol (java object layout),可在maven中引入坐标:

    org.openjdk.jol    jol-core    0.14

在代码中使用jol提供的方法查看 jvm 信息:

System.out.println(VM.current().details());

通过打印出来的信息,可以看到我们使用的是 64 位 jvm,并开启了指针压缩,对象默认使用 8 字节对齐方式。通过jol查看对象内存布局的方法,将在后面的例子中具体展示,下面开始对象内存布局的正式学习。

3、对象头

首先看一下对象头(Object header)的组成部分,根据普通对象和数组对象的不同,结构将会有所不同。只有当对象是数组对象才会有数组长度部分,普通对象没有该部分

在对象头中mark word 占8字节,默认开启指针压缩的情况下klass pointer 占4字节,数组对象的数组长度占4字节。在了解了对象头的基础结构后,现在以一个不包含任何属性的空对象为例,查看一下它的内存布局,创建User类:

public class User {}

使用jol查看对象头的内存布局:

public static void main(String[] args) {    User user=new User();    //查看对象的内存布局    System.out.println(ClassLayout.parseInstance(user).toPrintable());}

执行代码,查看打印信息

  • OFFSET:偏移地址,单位为字节

  • SIZE:占用内存大小,单位为字节

  • TYPEClass中定义的类型

  • DESCRIPTION:类型描述,Obejct header 表示对象头,alignment表示对齐填充

  • VALUE:对应内存中存储的值

当前对象共占用16字节,因为8字节标记字加4字节的类型指针,不满足向8字节对齐,因此需要填充4个字节:

8B (mark word) + 4B (klass pointer) + 0B (instance data) + 4B (padding)

这样我们就通过直观的方式,了解了一个不包含属性的最简单的空对象,在内存中的基本组成是怎样的。在此基础上,我们来深入学习对象头中各个组成部分。

3.1 Mark Word 标记字

在对象头中,mark word 一共有64个bit,用于存储对象自身的运行时数据

3.1.1 基于mark word的锁升级

在jdk6 之前,通过synchronized关键字加锁时使用无差别的的重量级锁,重量级锁会造成线程的串行执行,并且使cpu在用户态和核心态之间频繁切换。随着对synchronized的不断优化,提出了锁升级的概念,并引入了偏向锁、轻量级锁、重量级锁。在mark word中,锁(lock)标志位占用2个bit,结合1个bit偏向锁(biased_lock)标志位,这样通过倒数的3位,就能用来标识当前对象持有的锁的状态,并判断出其余位存储的是什么信息。

基于mark word的锁升级的流程如下:

1、锁对象刚创建时,没有任何线程竞争,对象处于无锁状态。在上面打印的空对象的内存布局中,根据大小端,得到最后8位是00000001,表示处于无锁态,并且处于不可偏向状态。这是因为在jdk中偏向锁存在延迟4秒启动,也就是说在jvm启动后4秒后创建的对象才会开启偏向锁,我们通过jvm参数取消这个延迟时间:

-XX:BiasedLockingStartupDelay=0

这时最后3位为101,表示当前对象的锁没有被持有,并且处于可被偏向状态。

2、在没有线程竞争的条件下,第一个获取锁的线程通过CAS将自己的threadId写入到该对象的mark word中,若后续该线程再次获取锁,需要比较当前线程threadId和对象mark word中的threadId是否一致,如果一致那么可以直接获取,并且锁对象始终保持对该线程的偏向,也就是说偏向锁不会主动释放。

使用代码进行测试同一个线程重复获取锁的过程:

public static void main(String[] args) {    User user=new User();    synchronized (user){        System.out.println(ClassLayout.parseInstance(user).toPrintable());    }    System.out.println(ClassLayout.parseInstance(user).toPrintable());    synchronized (user){        System.out.println(ClassLayout.parseInstance(user).toPrintable());    }}

可以看到一个线程对一个对象加锁、解锁、重新获取对象的锁时,mark word都没有发生变化,偏向锁中的当前线程指针始终指向同一个线程。

3、当两个或以上线程交替获取锁,但并没有在对象上并发的获取锁时,偏向锁升级为轻量级锁。在此阶段,线程采取CAS的自旋方式尝试获取锁,避免阻塞线程造成的cpu在用户态和内核态间转换的消耗。测试代码如下:

public static void main(String[] args) throws InterruptedException {    User user=new User();    synchronized (user){        System.out.println("--MAIN--:"+ClassLayout.parseInstance(user).toPrintable());    }    Thread thread = new Thread(() -> {        synchronized (user) {            System.out.println("--THREAD--:"+ClassLayout.parseInstance(user).toPrintable());        }    });    thread.start();    thread.join();    System.out.println("--END--:"+ClassLayout.parseInstance(user).toPrintable());}

整个加锁状态的变化流程如下:

  • 主线程首先对 user 对象加锁,首次加锁为101偏向锁

  • 子线程等待主线程释放锁后,对user对象加锁,这时将偏向锁升级为00轻量级锁

  • 轻量级锁解锁后,user 对象无线程竞争,恢复为001无锁态,并且处于不可偏向状态。如果之后有线程再尝试获取 user 对象的锁,会直接加轻量级锁,而不是偏向锁

4、当两个或以上线程并发的在同一个对象上进行同步时,为了避免无用自旋消耗 cpu,轻量级锁会升级成重量级锁。这时mark word中的指针指向的是monitor对象(也被称为管程或监视器锁)的起始地址。测试代码如下:

public static void main(String[] args) {    User user = new User();    new Thread(() -> {        synchronized (user) {            System.out.println("--THREAD1--:" + ClassLayout.parseInstance(user).toPrintable());            try {                TimeUnit.SECONDS.sleep(2);            } catch (InterruptedException e) {                e.printStackTrace();            }        }    }).start();    new Thread(() -> {        synchronized (user) {            System.out.println("--THREAD2--:" + ClassLayout.parseInstance(user).toPrintable());            try {                TimeUnit.SECONDS.sleep(2);            } catch (InterruptedException e) {                e.printStackTrace();            }        }    }).start();}

可以看到,在两个线程同时竞争user对象的锁时,会升级为10重量级锁。

3.1.2 其他信息

mark word 中其他重要信息进行说明:

  • hashcode:无锁态下的hashcode采用了延迟加载技术,在第一次调用hashCode()方法时才会计算写入。对这一过程进行验证:

public static void main(String[] args) {    User user=new User();    //打印内存布局    System.out.println(ClassLayout.parseInstance(user).toPrintable());    //计算hashCode    System.out.println(user.hashCode());    //再次打印内存布局    System.out.println(ClassLayout.parseInstance(user).toPrintable());}

可以看到,在没有调用hashCode()方法前,31位的哈希值不存在,全部填充为0。在调用方法后,根据大小端,被填充的数据为:

1011001001101100011010010101101

将2进制转换为10进制,对应哈希值1496724653。需要注意,只有在调用没有被重写的Object.hashCode()方法或System.identityHashCode(Object)方法才会写入mark word,执行用户自定义的hashCode()方法不会被写入。

大家可能会注意到,当对象被加锁后,mark word中就没有足够空间来保存hashCode了,这时hashcode会被移动到重量级锁的Object Monitor中。

  • epoch:偏向锁的时间戳

  • 分代年龄(age):在jvm的垃圾回收过程中,每当对象经过一次Young GC,年龄都会加1,这里4位来表示分代年龄最大值为15,这也就是为什么对象的年龄超过15后会被移到老年代的原因。在启动时可以通过添加参数来改变年龄阈值:

-XX:MaxTenuringThreshold

当设置的阈值超过15时,启动时会报错

3.2 Klass Pointer 类型指针

Klass Pointer是一个指向方法区中Class信息的指针,虚拟机通过这个指针确定该对象属于哪个类的实例。在64位的JVM中,支持指针压缩功能,根据是否开启指针压缩,Klass Pointer占用的大小将会不同:

  • 未开启指针压缩时,类型指针占用8B (64bit)

  • 开启指针压缩情况下,类型指针占用4B (32bit)

jdk6之后的版本中,指针压缩是被默认开启的,可通过启动参数开启或关闭该功能:

#开启指针压缩:-XX:+UseCompressedOops#关闭指针压缩:-XX:-UseCompressedOops

还是以刚才的User类为例,关闭指针压缩后再次查看对象的内存布局

对象大小虽然还是16字节,但是组成发生了改变,8字节标记字加8字节类型指针,已经能满足对齐条件,因此不需要填充。

8B (mark word) + 8B (klass pointer) + 0B (instance data) + 0B (padding)
3.2.1 指针压缩原理

在了解了指针压缩的作用后,我们来看一下指针压缩是如何实现的。首先在不开启指针压缩的情况下,一个对象的内存地址使用64位表示,这时能描述的内存地址范围是:

0 ~ 2^64-1

在开启指针压缩后,使用4个字节也就是32位,可以表示2^32 个内存地址,如果这个地址是真实地址的话,由于CPU寻址的最小单位是Byte,那么就是4GB内存。这对于我们来说是远远不够的,但是之前我们说过,java中对象默认使用了8字节对齐,也就是说1个对象占用的空间必须是8字节的整数倍,这样就创造了一个条件,使jvm在定位一个对象时不需要使用真正的内存地址,而是定位到由java进行了8字节映射后的地址(可以说是一个映射地址的编号)。

映射过程也非常简单,由于使用了8字节对齐后每个对象的地址偏移量后3位必定为0,所以在存储的时候可以将后3位0抹除(转化为bit是抹除了最后24位),在此基础上再去掉最高位,就完成了指针从8字节到4字节的压缩。而在实际使用时,在压缩后的指针后加3位0,就能够实现向真实地址的映射。

完成压缩后,现在指针的32位中的每一个bit,都可以代表8个字节,这样就相当于使原有的内存地址得到了8倍的扩容。所以在8字节对齐的情况下,32位最大能表示2^32*8=32GB内存,内存地址范围是:

0 ~ (2^32-1)*8

由于能够表示的最大内存是32GB,所以如果配置的最大的堆内存超过这个数值时,那么指针压缩将会失效。配置jvm启动参数:

-Xmx32g

此时,指针压缩失效,指针长度恢复到8字节。那么如果业务场景内存超过32GB怎么办呢,可以通过修改默认对齐长度进行再次扩展,我们将对齐长度修改为16字节:

-XX:ObjectAlignmentInBytes=16 -Xmx32g

可以看到指针压缩后占4字节,同时对象向16字节进行了填充对齐,按照上面的计算,这时配置最大堆内存为64GB时指针压缩才会失效。

对指针压缩做一下简单总结:

  • 通过指针压缩,利用对齐填充的特性,通过映射方式达到了内存地址扩展的效果

  • 指针压缩能够节省内存空间,同时提高了程序的寻址效率

  • 堆内存设置时最好不要超过32GB,这时指针压缩将会失效,造成空间的浪费

  • 此外,指针压缩不仅可以作用于对象头的类型指针,还可以作用于引用类型的字段指针,以及引用类型数组指针

3.3 数组长度

如果当对象是一个数组对象时,那么在对象头中有一个保存数组长度的空间,占用4字节(32bit)空间。通过下面代码进行测试:

public static void main(String[] args) {    User[] user=new User[2];    //查看对象的内存布局    System.out.println(ClassLayout.parseInstance(user).toPrintable());}

内存结构从上到下分别为:

  • 8字节mark word

  • 4字节klass pointer

  • 4字节数组长度,值为2,表示数组中有两个元素

  • 开启指针压缩后每个引用类型占4字节,数组中两个元素共占8字节

需要注意的是,在未开启指针压缩的情况下,在数组长度后会有一段对齐填充字节

通过计算:

8B (mark word) + 8B (klass pointer) + 4B (array length) + 16B (instance data)=36B

需要向8字节进行对齐,这里选择将对齐的4字节添加在了数组长度和实例数据之间。

4、实例数据

实例数据(Instance Data)保存的是对象真正存储的有效信息,保存了代码中定义的各种数据类型的字段内容,并且如果有继承关系存在,子类还会包含从父类继承过来的字段。

  • 基本数据类型:

TypeBytes
byte,boolean1
char,short2
int,float4
long,double8
  • 引用数据类型:

开启指针压缩情况下占8字节,开启指针压缩后占4字节。

4.1 字段重排序

给User类添加基本数据类型的属性字段:

public class User {    int id,age,weight;    byte sex;    long phone;    char local;}

可以看到,在内存中,属性的排列顺序与在类中定义的顺序不同,这是因为jvm会采用字段重排序技术,对原始类型进行重新排序,以达到内存对齐的目的。具体规则遵循如下:

  • 按照数据类型的长度大小,从大到小排列

  • 具有相同长度的字段,会被分配在相邻位置

  • 如果一个字段的长度是L个字节,那么这个字段的偏移量(OFFSET)需要对齐至nL(n为整数)

上面的前两条规则相对容易理解,这里通过举例对第3条进行解释:

因为long类型占8字节,所以它的偏移量必定是8n,再加上前面对象头占12字节,所以long类型变量的最小偏移量是16。通过打印对象内存布局可以发现,当对象头不是8字节的整数倍时(只存在8n+4字节情况),会按从大到小的顺序,使用4、2、1字节长度的属性进行补位。为了和对齐填充进行区分,可以称其为前置补位,如果在补位后仍然不满足8字节整数倍,会进行对齐填充。在存在前置补位的情况下,字段的排序会打破上面的第一条规则。

因此在上面的内存布局中,先使用4字节的int进行前置补位,再按第一条规则从大到小顺序进行排列。如果我们删除3个int类型的字段,再查看内存布局:

charbyte类型的变量被提到前面进行前置补位,并在long类型前进行了1字节的对齐填充。

4.2 拥有父类情况
  • 当一个类拥有父类时,整体遵循在父类中定义的变量出现在子类中定义的变量之前的原则

public class A {    int i1,i2;    long l1,l2;    char c1,c2;}public class B extends A{    boolean b1;    double d1,d2;}
  • 如果父类需要后置补位的情况,可能会将子类中类型长度较短的变量提前,但是整体还是遵循子类在父类之后的原则

public class A {    int i1,i2;    long l1;}public class B extends A {    int i1,i2;    long l1;}

可以看到,子类中较短长度的变量被提前到父类后进行了后置补位。

  • 父类的前置对齐填充会被子类继承

public class A {    long l;}public class B extends A{    long l2;    int i1;}

当B类没有继承A类时,正好满足8字节对齐,不需要进行对齐填充。当B类继承A类后,会继承A类的前置补位填充,因此在B类的末尾也需要对齐填充。

4.3 引用数据类型

在上面的例子中,仅探讨了基本数据类型的排序情况,那么如果存在引用数据类型时,排序情况是怎样的呢?在User类中添加引用类型:

public class User {     int id;     String firstName;     String lastName;     int age;}

可以看到默认情况下,基本数据类型的变量排在引用数据类型前。这个顺序可以在jvm启动参数中进行修改:

-XX:FieldsAllocationStyle=0

重新运行,可以看到引用数据类型的排列顺序被放在了前面:

FieldsAllocationStyle的不同取值简要说明:

  • 0:先放入普通对象的引用指针,再放入基本数据类型变量

  • 1:默认情况,表示先放入基本数据类型变量,再放入普通对象的引用指针

4.4 静态变量

在上面的基础上,在类中加入静态变量:

public class User {     int id;     static byte local;}

通过结果可以看到,静态变量并不在对象的内存布局中,它的大小是不计算在对象中的,因为静态变量属于类而不是属于某一个对象的。

5、对齐填充字节

Hotspot的自动内存管理系统中,要求对象的起始地址必须是8字节的整数倍,也就是说对象的大小必须满足8字节的整数倍。因此如果实例数据没有对齐,那么需要进行对齐补全空缺,补全的bit位仅起占位符作用,不具有特殊含义。

在前面的例子中,我们已经对对齐填充有了充分的认识,下面再做一些补充:

  • 在开启指针压缩的情况下,如果类中有long/double类型的变量时,会在对象头和实例数据间形成间隙(gap),为了节省空间,会默认把较短长度的变量放在前边,这一功能可以通过jvm参数进行开启或关闭:

# 开启-XX:+CompactFields# 关闭-XX:-CompactFields

测试关闭情况,可以看到较短长度的变量没有前移填充:

  • 在前面指针压缩中,我们提到了可以改变对齐宽度,这也是通过修改下面的jvm参数配置实现的:

-XX:ObjectAlignmentInBytes

默认情况下对齐宽度为8,这个值可以修改为2~256以内2的整数幂,一般情况下都以8字节对齐或16字节对齐。测试修改为16字节对齐:

上面的例子中,在调整为16字节对齐的情况下,最后一行的属性字段只占了6字节,因此会添加10字节进行对齐填充。当然普通情况下不建议修改对齐长度参数,如果对齐宽度过长,可能会导致内存空间的浪费。

关于"Java对象内存布局实例分析"这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对"Java对象内存布局实例分析"知识都有一定的了解,大家如果还想学习更多知识,欢迎关注行业资讯频道。

对象 字节 指针 内存 类型 数据 长度 情况 线程 布局 变量 地址 数组 字段 实例 方法 大小 代码 信息 面的 数据库的安全要保护哪些东西 数据库安全各自的含义是什么 生产安全数据库录入 数据库的安全性及管理 数据库安全策略包含哪些 海淀数据库安全审计系统 建立农村房屋安全信息数据库 易用的数据库客户端支持安全管理 连接数据库失败ssl安全错误 数据库的锁怎样保障安全 统计数据库数据量语句 服务器装机用哪个软件好 中间件技术 数据库 云服务器就是虚拟服务器吗 许继网络安全监测装置说明 软件开发里面具体的分工都有哪些 演讲稿题目推荐网络安全 无锡车间备件管理软件开发 与数据库的接口叫什么 sun服务器查看路由 教育软件开发技术 服务器登录显示正在安装软件 金铲铲微信区服务器满了 网络安全系统图解 戴尔服务器无法识别屏幕 dhcp服务器连不上网怎么办 大芒果web服务器 明朝万达网络安全产业链 天津鸿富锦电子软件开发 产品分类 数据库 服务器安全码在哪里 实验室如何搭建个人服务器 如何在桌面添加服务器客户端 网络安全绘画作品怎么画 网络安全通报预警工作 尧天互联网教育科技公司 远程医疗系统软件开发哪家价格低 广东语音网络技术分类五星服务 医疗软件开发的过程 软件开发语言指什么意思
0