# Splitting the dataset into the Training set and Test set# install.packages('caTools')library(caTools)set.seed(123)split = sample.split(dataset$Scores, SplitRatio = 1/4)training_set <- subset(dataset, split == TRUE)test_set <- subset(dataset, split == FALSE)# Feature Scaling# training_set <- scale(training_set)# test_set <- scale(test_set)
# Fitting Simple Linear Regression to the Training setregressor = lm(formula = Scores ~ Hours, data = training_set)# Predicting the resultsy_pred <- predict(regressor, newdata = test_set)
5 结果可视化
# Visualising the Training resultslibrary(ggplot2)ggplot() +geom_point(aes(x = training_set$Hours, y = training_set$Scores), colour = 'red') +geom_line(aes(x = training_set$Hours, y = predict(regressor, newdata = training_set)), colour = 'blue') +ggtitle('Scores vs Hours (Training set)') + xlab('Hours') + ylab('Scores')# Visualising the Test resultslibrary(ggplot2)ggplot() +geom_point(aes(x = test_set$Hours, y = test_set$Scores), colour = 'red') +geom_line(aes(x = training_set$Hours, y = predict(regressor, newdata = training_set)), colour = 'blue') +ggtitle('Scores vs Hours (Test set)') + xlab('Hours') + ylab('Scores')