pytorch中的numel函数怎么用
发表于:2025-11-07 作者:千家信息网编辑
千家信息网最后更新 2025年11月07日,这篇文章主要介绍pytorch中的numel函数怎么用,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!在pytorch中有一个numel函数。通过这个函数我们可以得知tensor
千家信息网最后更新 2025年11月07日pytorch中的numel函数怎么用
这篇文章主要介绍pytorch中的numel函数怎么用,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
在pytorch中有一个numel函数。通过这个函数我们可以得知tensor中一共包含多少个元素。
获取tensor中一共包含多少个元素
import torchx = torch.randn(3,3)print("number elements of x is ",x.numel())y = torch.randn(3,10,5)print("number elements of y is ",y.numel())输出:
number elements of x is 9
number elements of y is 150
27和150分别位x和y中各有多少个元素或变量
补充:pytorch获取张量元素个数numel()的用法
numel就是"number of elements"的简写。
numel()可以直接返回int类型的元素个数
import torch a = torch.randn(1, 2, 3, 4)b = a.numel()print(type(b)) # intprint(b) # 24通过numel()函数,我们可以迅速查看一个张量到底又多少元素。
补充:pytorch 卷积结构和numel()函数
看代码吧~
from torch import nn class CNN(nn.Module): def __init__(self, num_channels=1, d=56, s=12, m=4): super(CNN, self).__init__() self.first_part = nn.Sequential( nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2), nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2), nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2), nn.PReLU(d) ) def forward(self, x): x = self.first_part(x) return x model = CNN()for m in model.first_part: if isinstance(m, nn.Conv2d): # print('m:',m.weight.data) print('m:',m.weight.data[0]) print('m:',m.weight.data[0][0]) print('m:',m.weight.data.numel()) #numel() 计算矩阵中元素的个数 结果:m: tensor([[[-0.2822, 0.0128, -0.0244], [-0.2329, 0.1037, 0.2262], [ 0.2845, -0.3094, 0.1443]]]) #卷积核大小为3x3m: tensor([[-0.2822, 0.0128, -0.0244], [-0.2329, 0.1037, 0.2262], [ 0.2845, -0.3094, 0.1443]]) #卷积核大小为3x3m: 504 # = 56 x (3 x 3) 输出通道数为56,卷积核大小为3x3m: tensor([-0.0335, 0.2945, 0.2512, 0.2770, 0.2071, 0.1133, -0.1883, 0.2738, 0.0805, 0.1339, -0.3000, -0.1911, -0.1760, 0.2855, -0.0234, -0.0843, 0.1815, 0.2357, 0.2758, 0.2689, -0.2477, -0.2528, -0.1447, -0.0903, 0.1870, 0.0945, -0.2786, -0.0419, 0.1577, -0.3100, -0.1335, -0.3162, -0.1570, 0.3080, 0.0951, 0.1953, 0.1814, -0.1936, 0.1466, -0.2911, -0.1286, 0.3024, 0.1143, -0.0726, -0.2694, -0.3230, 0.2031, -0.2963, 0.2965, 0.2525, -0.2674, 0.0564, -0.3277, 0.2185, -0.0476, 0.0558]) bias偏置的值m: tensor([[[ 0.5747, -0.3421, 0.2847]]]) 卷积核大小为1x3m: tensor([[ 0.5747, -0.3421, 0.2847]]) 卷积核大小为1x3m: 168 # = 56 x (1 x 3) 输出通道数为56,卷积核大小为1x3m: tensor([ 0.5328, -0.5711, -0.1945, 0.2844, 0.2012, -0.0084, 0.4834, -0.2020, -0.0941, 0.4683, -0.2386, 0.2781, -0.1812, -0.2990, -0.4652, 0.1228, -0.0627, 0.3112, -0.2700, 0.0825, 0.4345, -0.0373, -0.3220, -0.5038, -0.3166, -0.3823, 0.3947, -0.3232, 0.1028, 0.2378, 0.4589, 0.1675, -0.3112, -0.0905, -0.0705, 0.2763, 0.5433, 0.2768, -0.3804, 0.4855, -0.4880, -0.4555, 0.4143, 0.5474, 0.3305, -0.0381, 0.2483, 0.5133, -0.3978, 0.0407, 0.2351, 0.1910, -0.5385, 0.1340, 0.1811, -0.3008]) bias偏置的值m: tensor([[[0.0184], [0.0981], [0.1894]]]) 卷积核大小为3x1m: tensor([[0.0184], [0.0981], [0.1894]]) 卷积核大小为3x1m: 168 # = 56 x (3 x 1) 输出通道数为56,卷积核大小为3x1m: tensor([-0.2951, -0.4475, 0.1301, 0.4747, -0.0512, 0.2190, 0.3533, -0.1158, 0.2237, -0.1407, -0.4756, 0.1637, -0.4555, -0.2157, 0.0577, -0.3366, -0.3252, 0.2807, 0.1660, 0.2949, -0.2886, -0.5216, 0.1665, 0.2193, 0.2038, -0.1357, 0.2626, 0.2036, 0.3255, 0.2756, 0.1283, -0.4909, 0.5737, -0.4322, -0.4930, -0.0846, 0.2158, 0.5565, 0.3751, -0.3775, -0.5096, -0.4520, 0.2246, -0.5367, 0.5531, 0.3372, -0.5593, -0.2780, -0.5453, -0.2863, 0.5712, -0.2882, 0.4788, 0.3222, -0.4846, 0.2170]) bias偏置的值 '''初始化后'''class CNN(nn.Module): def __init__(self, num_channels=1, d=56, s=12, m=4): super(CNN, self).__init__() self.first_part = nn.Sequential( nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2), nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2), nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2), nn.PReLU(d) ) self._initialize_weights() def _initialize_weights(self): for m in self.first_part: if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel()))) nn.init.zeros_(m.bias.data) def forward(self, x): x = self.first_part(x) return x model = CNN()for m in model.first_part: if isinstance(m, nn.Conv2d): # print('m:',m.weight.data) print('m:',m.weight.data[0]) print('m:',m.weight.data[0][0]) print('m:',m.weight.data.numel()) #numel() 计算矩阵中元素的个数 结果:m: tensor([[[-0.0284, -0.0585, 0.0271], [ 0.0125, 0.0554, 0.0511], [-0.0106, 0.0574, -0.0053]]])m: tensor([[-0.0284, -0.0585, 0.0271], [ 0.0125, 0.0554, 0.0511], [-0.0106, 0.0574, -0.0053]])m: 504m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])m: tensor([[[ 0.0059, 0.0465, -0.0725]]])m: tensor([[ 0.0059, 0.0465, -0.0725]])m: 168m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])m: tensor([[[ 0.0599], [-0.1330], [ 0.2456]]])m: tensor([[ 0.0599], [-0.1330], [ 0.2456]])m: 168m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])以上是"pytorch中的numel函数怎么用"这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注行业资讯频道!
卷积
大小
元素
函数
个数
输出
通道
内容
张量
矩阵
篇文章
结果
代码
价值
兴趣
变量
小伙
小伙伴
就是
更多
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
中科院上海有机所红外谱图数据库
计算机网络技术如何接收数据
调用数据库字符串
方舟生存如何服务器手游
量子计算对网络安全的影响
软件开发为啥会找两个公司同时做
惠普服务器管理口如何配置
棉花糖WiFi显示服务器繁忙
数据库的数据字典
公安网络安全检查工作总结
阳光服务器
陕西网络安全企业
云帆改服务器
第一支正式网络安全攻防战队
钱是数据库中的一条路
天水酷睿网络技术有限公司
数据库可以改成什么
《网络技术应用》期末考试
考研想学数据库有什么能报的专业
mdb数据库太大打开不了
西安云契约网络技术有限公司
什么是互联网加生物科技
网络安全保障总体情况
服务器技术发展趋势
网络安全 与 保密的关系
蓝鸟软件开发工具
中国人看足球的数据库
数据库表怎么建立
环艺和软件开发的前景
网络安全法颁布时间实行