基本RNN的Tensorflow实现是怎样的
发表于:2025-12-02 作者:千家信息网编辑
千家信息网最后更新 2025年12月02日,这篇文章给大家介绍基本RNN的Tensorflow实现是怎样的,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。今天我们一起看下在tensorflow中基本的RNN是怎么实现的。首先
千家信息网最后更新 2025年12月02日基本RNN的Tensorflow实现是怎样的
这篇文章给大家介绍基本RNN的Tensorflow实现是怎样的,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
今天我们一起看下在tensorflow中基本的RNN是怎么实现的。
首先,为了更好的理解RNN的运行机制,我们不用tensorflow的相关RNN的操作,来实现一个简单的RNN模型。这里我们创建一个初识循环神经网络(RNN)
中所呈现的一个拥有5个循环神经元的一层RNN网络,其中激活函数用tanh,并且假设该RNN仅运行两个时刻,每个时刻的输入向量的大小为3,通过两个时刻来显示。代码如下:
n_inputs = 3
n_neurons = 5
X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])
Wx = tf.Variable(tf.random_normal(shape=[n_inputs, n_neurons],dtype=tf.float32))
Wy = tf.Variable(tf.random_normal(shape=[n_neurons,n_neurons],dtype=tf.float32))
b = tf.Variable(tf.zeros([1, n_neurons], dtype=tf.float32))
Y0 = tf.tanh(tf.matmul(X0, Wx) + b)
Y1 = tf.tanh(tf.matmul(Y0, Wy) + tf.matmul(X1, Wx) + b)
init = tf.global_variables_initializer()
这个网络有点绕,咋一看像两层向前传输的网络,其实不然,首先,相同的权重和偏置项都被两个层采用了。其次,在每一层都有输入,并且每一层都有单独的输出。为了运行这个模型,我们需要在两个时刻都对模型进行输入数据,如下:
import numpy as np
# Mini-batch: instance 0,instance 1,instance 2,instance 3
X0_batch = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]]) # t = 0
X1_batch = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]]) # t = 1
with tf.Session() as sess:
init.run()
Y0_val, Y1_val = sess.run([Y0, Y1], feed_dict={X0: X0_batch, X1: X1_batch})
上面的mini-batch包含了两个时刻的输入,每个时刻有4个样本,其中每个样本包含3个特征。最后的Y0_val和Y1_val包括了两个时刻的网络所有神经元在mini-batch上的输出。 下面是输出的结果:
>>> print(Y0_val) # output at t = 0
[[-0.2964572 0.82874775 -0.34216955 -0.75720584 0.19011548] # instance 0
[-0.12842922 0.99981797 0.84704727 -0.99570125 0.38665548] # instance 1
[ 0.04731077 0.99999976 0.99330056 -0.999933 0.55339795] # instance 2
[ 0.70323634 0.99309105 0.99909431 -0.85363263 0.7472108 ]] # instance 3
>>> print(Y1_val) # output at t = 1
[[ 0.51955646 1. 0.99999022 -0.99984968 -0.24616946] # instance 0
[-0.70553327 -0.11918639 0.48885304 0.08917919 -0.26579669] # instance 1
[-0.32477224 0.99996376 0.99933046 -0.99711186 0.10981458] # instance 2
[-0.43738723 0.91517633 0.97817528 -0.91763324 0.11047263]] # instance 3关于基本RNN的Tensorflow实现是怎样的就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
时刻
两个
网络
输入
模型
神经
输出
运行
内容
更多
样本
神经元
帮助
循环
不错
相同
不用
代码
兴趣
其实不然
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
软件开发相关公司名称
伍牛互联网科技
数字通讯与网络安全前景怎么样
小学网络安全知识问答
kms激活服务器的详细步骤
内师大服务器名称
软件开发中的开源协议
软件开发调查报告
江苏数据库外泌体服务
网络技术及应用专升本
oracle指定数据库
网络安全配制检测要求
余姚嵌入式软件开发周期
批准处理oracle数据库
静安区推广软件开发销售价格
网络安全创新点怎么写
足球球员数据库软件
网络安全与应用就业
服务器金牌银牌哪个好
软件开发每天人工费标准
网络安全等级2保护规范
阿里巴巴网络技术评价
全国公安安全数据库
软件开发毕业实践手册
就业好软件开发培训
桂阳学it软件开发就业
刀云服务器
软件开发公司的科目设置
网络安全技术对抗是什么
互联网科技智慧大厦