Python语言特征和编程技巧有哪些
发表于:2025-11-07 作者:千家信息网编辑
千家信息网最后更新 2025年11月07日,本篇内容主要讲解"Python语言特征和编程技巧有哪些",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"Python语言特征和编程技巧有哪些"吧!1 拆箱>>
千家信息网最后更新 2025年11月07日Python语言特征和编程技巧有哪些
本篇内容主要讲解"Python语言特征和编程技巧有哪些",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"Python语言特征和编程技巧有哪些"吧!
1 拆箱
>>> a, b, c = 1, 2, 3>>> a, b, c(1, 2, 3)>>> a, b, c = [1, 2, 3]>>> a, b, c(1, 2, 3)>>> a, b, c = (2 * i + 1 for i in range(3))>>> a, b, c(1, 3, 5)>>> a, (b, c), d = [1, (2, 3), 4]>>> a1>>> b2>>> c3>>> d4
2 拆箱变量交换
>>> a, b = 1, 2>>> a, b = b, a>>> a, b(2, 1)
3 扩展拆箱(只兼容python3)
>>> a, *b, c = [1, 2, 3, 4, 5]>>> a1>>> b[2, 3, 4]>>> c5
4 负数索引
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-1]10>>> a[-3]8
5 切割列表
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[2:8][2, 3, 4, 5, 6, 7]
6 负数索引切割列表
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-4:-2][7, 8]
7 指定步长切割列表
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[::2][0, 2, 4, 6, 8, 10]>>> a[::3][0, 3, 6, 9]>>> a[2:8:2][2, 4, 6]
8 负数步长切割列表
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[::-1][10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]>>> a[::-2][10, 8, 6, 4, 2, 0]
9 列表切割赋值
>>> a = [1, 2, 3, 4, 5]>>> a[2:3] = [0, 0]>>> a[1, 2, 0, 0, 4, 5]>>> a[1:1] = [8, 9]>>> a[1, 8, 9, 2, 0, 0, 4, 5]>>> a[1:-1] = []>>> a[1, 5]
10 命名列表切割方式
>>> a = [0, 1, 2, 3, 4, 5]>>> LASTTHREE = slice(-3, None)>>> LASTTHREEslice(-3, None, None)>>> a[LASTTHREE][3, 4, 5]
11 列表以及迭代器的压缩和解压缩
>>> a = [1, 2, 3]>>> b = ['a', 'b', 'c']>>> z = zip(a, b)>>> z[(1, 'a'), (2, 'b'), (3, 'c')]>>> zip(*z)[(1, 2, 3), ('a', 'b', 'c')]12 列表相邻元素压缩器
>>> a = [1, 2, 3, 4, 5, 6]>>> zip(*([iter(a)] * 2))[(1, 2), (3, 4), (5, 6)]>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))>>> group_adjacent(a, 3)[(1, 2, 3), (4, 5, 6)]>>> group_adjacent(a, 2)[(1, 2), (3, 4), (5, 6)]>>> group_adjacent(a, 1)[(1,), (2,), (3,), (4,), (5,), (6,)]>>> zip(a[::2], a[1::2])[(1, 2), (3, 4), (5, 6)]>>> zip(a[::3], a[1::3], a[2::3])[(1, 2, 3), (4, 5, 6)]>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))>>> group_adjacent(a, 3)[(1, 2, 3), (4, 5, 6)]>>> group_adjacent(a, 2)[(1, 2), (3, 4), (5, 6)]>>> group_adjacent(a, 1)[(1,), (2,), (3,), (4,), (5,), (6,)]
13 在列表中用压缩器和迭代器滑动取值窗口
>>> def n_grams(a, n):... z = [iter(a[i:]) for i in range(n)]... return zip(*z)...>>> a = [1, 2, 3, 4, 5, 6]>>> n_grams(a, 3)[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]>>> n_grams(a, 2)[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]>>> n_grams(a, 4)[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
14 用压缩器反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}>>> m.items()[('a', 1), ('c', 3), ('b', 2), ('d', 4)]>>> zip(m.values(), m.keys())[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]>>> mi = dict(zip(m.values(), m.keys()))>>> mi{1: 'a', 2: 'b', 3: 'c', 4: 'd'}15 列表展开
>>> a = [[1, 2], [3, 4], [5, 6]]>>> list(itertools.chain.from_iterable(a))[1, 2, 3, 4, 5, 6]>>> sum(a, [])[1, 2, 3, 4, 5, 6]>>> [x for l in a for x in l][1, 2, 3, 4, 5, 6]>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]>>> [x for l1 in a for l2 in l1 for x in l2][1, 2, 3, 4, 5, 6, 7, 8]>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]>>> flatten(a)[1, 2, 3, 4, 5, 6, 7, 8]
16 生成器表达式
>>> g = (x ** 2 for x in xrange(10))>>> next(g)>>> next(g)1>>> next(g)4>>> next(g)9>>> sum(x ** 3 for x in xrange(10))2025>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)408
17 字典推导
>>> m = {x: x ** 2 for x in range(5)}>>> m{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}>>> m = {x: 'A' + str(x) for x in range(10)}>>> m{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}18 用字典推导反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}>>> m{'d': 4, 'a': 1, 'b': 2, 'c': 3}>>> {v: k for k, v in m.items()}{1: 'a', 2: 'b', 3: 'c', 4: 'd'}19 命名元组
>>> Point = collections.namedtuple('Point', ['x', 'y'])>>> p = Point(x=1.0, y=2.0)>>> pPoint(x=1.0, y=2.0)>>> p.x1.0>>> p.y2.020 继承命名元组
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):... __slots__ = ()... def __add__(self, other):... return Point(x=self.x + other.x, y=self.y + other.y)...>>> p = Point(x=1.0, y=2.0)>>> q = Point(x=2.0, y=3.0)>>> p + qPoint(x=3.0, y=5.0)21 操作集合
>>> A = {1, 2, 3, 3}>>> Aset([1, 2, 3])>>> B = {3, 4, 5, 6, 7}>>> Bset([3, 4, 5, 6, 7])>>> A | Bset([1, 2, 3, 4, 5, 6, 7])>>> A & Bset([3])>>> A - Bset([1, 2])>>> B - Aset([4, 5, 6, 7])>>> A ^ Bset([1, 2, 4, 5, 6, 7])>>> (A ^ B) == ((A - B) | (B - A))True22 操作多重集合
>>> A = collections.Counter([1, 2, 2])>>> B = collections.Counter([2, 2, 3])>>> ACounter({2: 2, 1: 1})>>> BCounter({2: 2, 3: 1})>>> A | BCounter({2: 2, 1: 1, 3: 1})>>> A & BCounter({2: 2})>>> A + BCounter({2: 4, 1: 1, 3: 1})>>> A - BCounter({1: 1})>>> B - ACounter({3: 1})23 统计在可迭代器中最常出现的元素
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])>>> ACounter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})>>> A.most_common(1)[(3, 4)]>>> A.most_common(3)[(3, 4), (1, 2), (2, 2)]24 两端都可操作的队列
>>> Q = collections.deque()>>> Q.append(1)>>> Q.appendleft(2)>>> Q.extend([3, 4])>>> Q.extendleft([5, 6])>>> Qdeque([6, 5, 2, 1, 3, 4])>>> Q.pop()4>>> Q.popleft()6>>> Qdeque([5, 2, 1, 3])>>> Q.rotate(3)>>> Qdeque([2, 1, 3, 5])>>> Q.rotate(-3)>>> Qdeque([5, 2, 1, 3])
25 有最大长度的双端队列
>>> last_three = collections.deque(maxlen=3)>>> for i in xrange(10):... last_three.append(i)... print ', '.join(str(x) for x in last_three)...0, 10, 1, 21, 2, 32, 3, 43, 4, 54, 5, 65, 6, 76, 7, 87, 8, 9
26 可排序词典
>>> m = dict((str(x), x) for x in range(10))>>> print ', '.join(m.keys())1, 0, 3, 2, 5, 4, 7, 6, 9, 8>>> m = collections.OrderedDict((str(x), x) for x in range(10))>>> print ', '.join(m.keys())0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))>>> print ', '.join(m.keys())10, 9, 8, 7, 6, 5, 4, 3, 2, 1
27 默认词典
>>> m = dict()>>> m['a']Traceback (most recent call last): File "", line 1, in KeyError: 'a'>>>>>> m = collections.defaultdict(int)>>> m['a']>>> m['b']>>> m = collections.defaultdict(str)>>> m['a']''>>> m['b'] += 'a'>>> m['b']'a'>>> m = collections.defaultdict(lambda: '[default value]')>>> m['a']'[default value]'>>> m['b']'[default value]'
28 默认字典的简单树状表达
>>> import json>>> tree = lambda: collections.defaultdict(tree)>>> root = tree()>>> root['menu']['id'] = 'file'>>> root['menu']['value'] = 'File'>>> root['menu']['menuitems']['new']['value'] = 'New'>>> root['menu']['menuitems']['new']['onclick'] = 'new();'>>> root['menu']['menuitems']['open']['value'] = 'Open'>>> root['menu']['menuitems']['open']['onclick'] = 'open();'>>> root['menu']['menuitems']['close']['value'] = 'Close'>>> root['menu']['menuitems']['close']['onclick'] = 'close();'>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': ')){ "menu": { "id": "file", "menuitems": { "close": { "onclick": "close();", "value": "Close" }, "new": { "onclick": "new();", "value": "New" }, "open": { "onclick": "open();", "value": "Open" } }, "value": "File" }}29 对象到唯一计数的映射
>>> import itertools, collections>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)>>> value_to_numeric_map['a']>>> value_to_numeric_map['b']1>>> value_to_numeric_map['c']2>>> value_to_numeric_map['a']>>> value_to_numeric_map['b']1
30 最大和最小的几个列表元素
>>> a = [random.randint(0, 100) for __ in xrange(100)]>>> heapq.nsmallest(5, a)[3, 3, 5, 6, 8]>>> heapq.nlargest(5, a)[100, 100, 99, 98, 98]
31 两个列表的笛卡尔积
>>> for p in itertools.product([1, 2, 3], [4, 5]):(1, 4)(1, 5)(2, 4)(2, 5)(3, 4)(3, 5)>>> for p in itertools.product([0, 1], repeat=4):... print ''.join(str(x) for x in p)...0000000100100011010001010110011110001001101010111100110111101111
32 列表组合和列表元素替代组合
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):... print ''.join(str(x) for x in c)...123124125134135145234235245345>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):... print ''.join(str(x) for x in c)...111213222333
33 列表元素排列组合
>>> for p in itertools.permutations([1, 2, 3, 4]):... print ''.join(str(x) for x in p)...123412431324134214231432213421432314234124132431312431423214324134123421412341324213423143124321
34 可链接迭代器
>>> a = [1, 2, 3, 4]>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):... print p...(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)(1, 2, 3)(1, 2, 4)(1, 3, 4)(2, 3, 4)>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))... print subset...()(1,)(2,)(3,)(4,)(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)(1, 2, 3)(1, 2, 4)(1, 3, 4)(2, 3, 4)(1, 2, 3, 4)
35 根据文件指定列类聚
>>> import itertools>>> with open('contactlenses.csv', 'r') as infile:... data = [line.strip().split(',') for line in infile]...>>> data = data[1:]>>> def print_data(rows):... print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)...>>> print_data(data)young myope no reduced noneyoung myope no normal softyoung myope yes reduced noneyoung myope yes normal hardyoung hypermetrope no reduced noneyoung hypermetrope no到此,相信大家对"Python语言特征和编程技巧有哪些"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
元素
字典
迭代
技巧
特征
编程技巧
语言
编程
负数
压缩器
组合
最大
内容
索引
词典
队列
步长
学习
实用
更深
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
数据库工程师报考
供应商产品数据库
如何做护苗网络安全的书签
中移在线软件开发待遇
串口单应用层 网络安全
三调全国土地基础数据库
不安全的前沿数据库怎么挖
郴州物流软件开发
医院无线网络安全设计
怎么制作游戏服务器
微博怎么刷数据库
sql数据库恢复内存不够
熟悉键盘软件开发
web服务器安全防护拓扑
大专网络技术有哪些
贵州视点科技数据通讯网络技术
怎么消除手机网络安全警告
微信小程序操作数据库
mc网易版服务器有什么类型
查看远程数据库版本
临朐租房软件开发
mongodb数据库是开源吗
云南浩淼网络技术有限公司
觅糖互联网网络科技
网络安全禁毒教育绘画
网络安全培训直播
数据库关系表
开源文件服务器部署
外网访问内部服务器
计算机网络技术 就业方向