千家信息网

Preemption抢占式调度的方法是什么

发表于:2025-12-02 作者:千家信息网编辑
千家信息网最后更新 2025年12月02日,这篇文章主要讲解了"Preemption抢占式调度的方法是什么",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Preemption抢占式调度的方法是什么
千家信息网最后更新 2025年12月02日Preemption抢占式调度的方法是什么

这篇文章主要讲解了"Preemption抢占式调度的方法是什么",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"Preemption抢占式调度的方法是什么"吧!

ScheduleAlgorithm的变化

在Kubernetes 1.8中,对ScheduleAlgorithm Interface的定义发生了改变,多了一个Preempt(...)。因此,我在博文Kubernetes Scheduler原理解析(当时是基于kubernetes 1.5)中对scheduler调度过程开的一句话概括"将PodSpec.NodeName为空的Pods逐个地,经过预选(Predicates)和优选(Priorities)两个步骤,挑选最合适的Node作为该Pod的Destination。"将不再准确了。

现在应该一句话这样描述才算准确了:"将PodSpec.NodeName为空的Pods逐个地,经过预选(Predicates)和优选(Priorities)两个步骤,挑选最合适的Node作为该Pod的Destination。如果经过预选和优选仍然没有找到合适的节点,并且启动了Pod Priority,那么该Pod将会进行Preempt抢占式调度找到最合适的节点及需要Evict的Pods。"

// ScheduleAlgorithm is an interface implemented by things that know how to schedule pods// onto machines.type ScheduleAlgorithm interface {        Schedule(*v1.Pod, NodeLister) (selectedMachine string, err error)        // Preempt receives scheduling errors for a pod and tries to create room for        // the pod by preempting lower priority pods if possible.        // It returns the node where preemption happened, a list of preempted pods, and error if any.        Preempt(*v1.Pod, NodeLister, error) (selectedNode *v1.Node, preemptedPods []*v1.Pod, err error)        // Predicates() returns a pointer to a map of predicate functions. This is        // exposed for testing.        Predicates() map[string]FitPredicate        // Prioritizers returns a slice of priority config. This is exposed for        // testing.        Prioritizers() []PriorityConfig}

Scheduler.scheduleOne开始真正的调度逻辑,每次负责一个Pod的调度,逻辑如下:

  • 从PodQueue中获取一个Pod。

  • 执行对应Algorithm的Schedule,进行预选和优选。

  • AssumePod

  • Bind Pod, 如果Bind Failed,ForgetPod。

在1.8中,但预选和优选调度完整没有找到合适node时(其实一定会是预选没有找到nodes,优选只是挑更好的),还会调用sched.preempt进行抢占式调度。

plugin/pkg/scheduler/scheduler.go:293func (sched *Scheduler) scheduleOne() {        pod := sched.config.NextPod()        if pod.DeletionTimestamp != nil {                sched.config.Recorder.Eventf(pod, v1.EventTypeWarning, "FailedScheduling", "skip schedule deleting pod: %v/%v", pod.Namespace, pod.Name)                glog.V(3).Infof("Skip schedule deleting pod: %v/%v", pod.Namespace, pod.Name)                return        }        glog.V(3).Infof("Attempting to schedule pod: %v/%v", pod.Namespace, pod.Name)        // Synchronously attempt to find a fit for the pod.        start := time.Now()        suggestedHost, err := sched.schedule(pod)        metrics.SchedulingAlgorithmLatency.Observe(metrics.SinceInMicroseconds(start))        if err != nil {                // schedule() may have failed because the pod would not fit on any host, so we try to                // preempt, with the expectation that the next time the pod is tried for scheduling it                // will fit due to the preemption. It is also possible that a different pod will schedule                // into the resources that were preempted, but this is harmless.                if fitError, ok := err.(*core.FitError); ok {                        sched.preempt(pod, fitError)                }                return        }        // Tell the cache to assume that a pod now is running on a given node, even though it hasn't been bound yet.        // This allows us to keep scheduling without waiting on binding to occur.        assumedPod := *pod        // assume modifies `assumedPod` by setting NodeName=suggestedHost        err = sched.assume(&assumedPod, suggestedHost)        if err != nil {                return        }        // bind the pod to its host asynchronously (we can do this b/c of the assumption step above).        go func() {                err := sched.bind(&assumedPod, &v1.Binding{                        ObjectMeta: metav1.ObjectMeta{Namespace: assumedPod.Namespace, Name: assumedPod.Name, UID: assumedPod.UID},                        Target: v1.ObjectReference{                                Kind: "Node",                                Name: suggestedHost,                        },                })                metrics.E2eSchedulingLatency.Observe(metrics.SinceInMicroseconds(start))                if err != nil {                        glog.Errorf("Internal error binding pod: (%v)", err)                }        }()}

Scheduler.preemt

好的,关于预选和优选,我这里不做过多解读,因为整个源码逻辑和1.5是一样,不同的是1.8增加了更多的Predicate和Priority Policys及其实现。下面只看抢占式调度Preempt的代码。

plugin/pkg/scheduler/scheduler.go:191func (sched *Scheduler) preempt(preemptor *v1.Pod, scheduleErr error) (string, error) {        if !utilfeature.DefaultFeatureGate.Enabled(features.PodPriority) {                glog.V(3).Infof("Pod priority feature is not enabled. No preemption is performed.")                return "", nil        }        preemptor, err := sched.config.PodPreemptor.GetUpdatedPod(preemptor)        if err != nil {                glog.Errorf("Error getting the updated preemptor pod object: %v", err)                return "", err        }        node, victims, err := sched.config.Algorithm.Preempt(preemptor, sched.config.NodeLister, scheduleErr)        if err != nil {                glog.Errorf("Error preempting victims to make room for %v/%v.", preemptor.Namespace, preemptor.Name)                return "", err        }        if node == nil {                return "", err        }        glog.Infof("Preempting %d pod(s) on node %v to make room for %v/%v.", len(victims), node.Name, preemptor.Namespace, preemptor.Name)        annotations := map[string]string{core.NominatedNodeAnnotationKey: node.Name}        err = sched.config.PodPreemptor.UpdatePodAnnotations(preemptor, annotations)        if err != nil {                glog.Errorf("Error in preemption process. Cannot update pod %v annotations: %v", preemptor.Name, err)                return "", err        }        for _, victim := range victims {                if err := sched.config.PodPreemptor.DeletePod(victim); err != nil {                        glog.Errorf("Error preempting pod %v/%v: %v", victim.Namespace, victim.Name, err)                        return "", err                }                sched.config.Recorder.Eventf(victim, v1.EventTypeNormal, "Preempted", "by %v/%v on node %v", preemptor.Namespace, preemptor.Name, node.Name)        }        return node.Name, err}
  • 检查FeaturesGate中是否开启了PodPriority,如果没开启,则不会进行后续Preemption操作;

  • 由于该Pod在Predicate/Priortiy调度过程失败后,会更新PodCondition,记录调度失败状态及失败原因。因此需要从apiserver中获取PodCondition更新后的Pod Object;

  • 调用ScheduleAlgorithm.Preempt进行抢占式调度,选出最佳node和待preempt pods(称为victims);

  • 调用apiserver给该pod(称为Preemptor)打上Annotation:NominatedNodeName=nodeName;

  • 遍历victims,调用apiserver进行逐个删除这些pods;

注意:在scheduler调用shed.schedule(pod)进行预选和优选调度失败时,Pod Bind Node失败,该Pod会requeue unscheduled Cache podqueue中,如果在这个pod调度过程中又有新的pod加入到待调度队列,那么该pod requeue时它前面就有其他pod,下一次调度就是先调度在它前面的pod,而这些pod的调度有可能会调度到刚刚通过Preempt释放资源的Node上,导致把刚才Preemptor释放的resource消耗掉。当再次轮到上次的Preemptor调度时,可能又需要触发一次某个节点的Preempt。

genericScheduler.Preempt

ScheduleAlgorithm.Preempt是抢占式调度的关键实现,其对应的实现在genericScheduler中:

plugin/pkg/scheduler/core/generic_scheduler.go:181// preempt finds nodes with pods that can be preempted to make room for "pod" to// schedule. It chooses one of the nodes and preempts the pods on the node and// returns the node and the list of preempted pods if such a node is found.// TODO(bsalamat): Add priority-based scheduling. More info: today one or more// pending pods (different from the pod that triggered the preemption(s)) may// schedule into some portion of the resources freed up by the preemption(s)// before the pod that triggered the preemption(s) has a chance to schedule// there, thereby preventing the pod that triggered the preemption(s) from// scheduling. Solution is given at:// https://github.com/kubernetes/community/blob/master/contributors/design-proposals/pod-preemption.md#preemption-mechanicsfunc (g *genericScheduler) Preempt(pod *v1.Pod, nodeLister algorithm.NodeLister, scheduleErr error) (*v1.Node, []*v1.Pod, error) {        // Scheduler may return various types of errors. Consider preemption only if        // the error is of type FitError.        fitError, ok := scheduleErr.(*FitError)        if !ok || fitError == nil {                return nil, nil, nil        }        err := g.cache.UpdateNodeNameToInfoMap(g.cachedNodeInfoMap)        if err != nil {                return nil, nil, err        }        if !podEligibleToPreemptOthers(pod, g.cachedNodeInfoMap) {                glog.V(5).Infof("Pod %v is not eligible for more preemption.", pod.Name)                return nil, nil, nil        }        allNodes, err := nodeLister.List()        if err != nil {                return nil, nil, err        }        if len(allNodes) == 0 {                return nil, nil, ErrNoNodesAvailable        }        potentialNodes := nodesWherePreemptionMightHelp(pod, allNodes, fitError.FailedPredicates)        if len(potentialNodes) == 0 {                glog.V(3).Infof("Preemption will not help schedule pod %v on any node.", pod.Name)                return nil, nil, nil        }        nodeToPods, err := selectNodesForPreemption(pod, g.cachedNodeInfoMap, potentialNodes, g.predicates, g.predicateMetaProducer)        if err != nil {                return nil, nil, err        }        for len(nodeToPods) > 0 {                node := pickOneNodeForPreemption(nodeToPods)                if node == nil {                        return nil, nil, err                }                passes, pErr := nodePassesExtendersForPreemption(pod, node.Name, nodeToPods[node], g.cachedNodeInfoMap, g.extenders)                if passes && pErr == nil {                        return node, nodeToPods[node], err                }                if pErr != nil {                        glog.Errorf("Error occurred while checking extenders for preemption on node %v: %v", node, pErr)                }                // Remove the node from the map and try to pick a different node.                delete(nodeToPods, node)        }        return nil, nil, err}

sched.schedule error检查

  • 只有前面sched.schedule()返回的error为FitError类型时,才会触发后续的Preemption。FitError就是表示pod在Predicate阶段进行某些PredicateFunc筛选时不通过。也就是说只有预选失败的Pod才会进行抢占式调度。

更新scheduler cache中的NodeInfo

  • 更新scheduler cache中NodeInfo,主要是更新Node上scheduled 和Assumed Pods,作为后续Preempt Pods时的考虑范围,确保Preemption是正确的。

podEligibleToPreemptOthers检查pod是否有资格进行抢占式调度

  • invoke podEligibleToPreemptOthers来判断该pod是否适合进行后续的Preemption,判断逻辑是:

    • 如果该Pod已经包含Annotation:NominatedNodeName=nodeName(说明该pod之前已经Preempted),并且Annotation中的这个Node有比该pod优先级更低的pod正在Terminating,则认为该pod不适合进行后续的Preemption,流程结束。

    • 除此之外,继续后续的流程。

    • 对应代码如下:

      plugin/pkg/scheduler/core/generic_scheduler.go:756func podEligibleToPreemptOthers(pod *v1.Pod, nodeNameToInfo map[string]*schedulercache.NodeInfo) bool {        if nodeName, found := pod.Annotations[NominatedNodeAnnotationKey]; found {                if nodeInfo, found := nodeNameToInfo[nodeName]; found {                        for _, p := range nodeInfo.Pods() {                                if p.DeletionTimestamp != nil && util.GetPodPriority(p) < util.GetPodPriority(pod) {                                        // There is a terminating pod on the nominated node.                                        return false                                }                        }                }        }        return true}


nodesWherePreemptionMightHelp筛选出Potential Nodes

  • invoke nodesWherePreemptionMightHelp来获取potential nodes。nodesWherePreemptionMightHelp的逻辑是:

    • NodeSelectorNotMatch,

    • PodNotMatchHostName,

    • TaintsTolerationsNotMatch,

    • NodeLabelPresenceViolated,

    • NodeNotReady,

    • NodeNetworkUnavailable,

    • NodeUnschedulable,

    • NodeUnknownCondition

    • 遍历所有的nodes,对每个nodes在sched.schedule()在预选阶段失败的Predicate策略(failedPredicates)进行扫描,如果failedPredicates包含以下Policy,则说明该node不适合作为Preempt的备选节点。

    • 除此之外的Node均作为Potential Nodes。

    • 对应代码如下:

      func nodesWherePreemptionMightHelp(pod *v1.Pod, nodes []*v1.Node, failedPredicatesMap FailedPredicateMap) []*v1.Node {        potentialNodes := []*v1.Node{}        for _, node := range nodes {                unresolvableReasonExist := false                failedPredicates, found := failedPredicatesMap[node.Name]                // If we assume that scheduler looks at all nodes and populates the failedPredicateMap                // (which is the case today), the !found case should never happen, but we'd prefer                // to rely less on such assumptions in the code when checking does not impose                // significant overhead.                for _, failedPredicate := range failedPredicates {                        switch failedPredicate {                        case                                predicates.ErrNodeSelectorNotMatch,                                predicates.ErrPodNotMatchHostName,                                predicates.ErrTaintsTolerationsNotMatch,                                predicates.ErrNodeLabelPresenceViolated,                                predicates.ErrNodeNotReady,                                predicates.ErrNodeNetworkUnavailable,                                predicates.ErrNodeUnschedulable,                                predicates.ErrNodeUnknownCondition:                                unresolvableReasonExist = true                                break                                // TODO(bsalamat): Please add affinity failure cases once we have specific affinity failure errors.                        }                }                if !found || !unresolvableReasonExist {                        glog.V(3).Infof("Node %v is a potential node for preemption.", node.Name)                        potentialNodes = append(potentialNodes, node)                }        }        return potentialNodes}


selectNodesForPreemption和selectVictimsOnNode选出可行Nodes及其对应的victims

  • invoke selectNodesForPreemption从Potential Nodes中找出所有可行的Nodes及对应的victim Pods,其对应的逻辑如为:启动max(16, potentialNodesNum)个worker(对应goruntine)通过WaitGroups并发等待所有node的check完成:

    • 遍历该node上所有的scheduled pods(包括assumed pods),将优先级比Preemptor更低的Pods都加入到Potential victims List中,并且将这些victims从NodeInfoCopy中删除,下次进行Predicate时就意味着Node上有更多资源可用。

    • 对Potential victims中元素进行排序,排序规则是按照优先级从高到底排序的,index为0的对应的优先级最高。

    • 检查Preemptor是否能scheduler配置的所有Predicates Policy(基于前面将这些victims从NodeInfoCopy中删除,将所有更低优先级的pods资源全部释放了),如果不通过则返回,表示该node不合适。All Predicate通过后,继续下面流程。

    • 遍历所有的Potential victims list item(已经按照优先级从高到底排序),试着把Potential victims中第一个Pod(优先级最高)加回到NodeInfoCopy中,再检查Preemptor是否能scheduler配置的所有Predicates Policy,如果不满足就把该pod再从NodeInfoCopy中删除,并且正式加入到victims list中。接着对Potential victims中第2,3...个Pod进行同样处理。这样做,是为了保证尽量保留优先级更高的Pods,尽量删除更少的Pods。

    • 最终返回每个可行node及其对应victims list。

    • selectNodesForPreemption代码如下,其实核心代码在selectVictimsOnNode

      plugin/pkg/scheduler/core/generic_scheduler.go:583func selectNodesForPreemption(pod *v1.Pod,        nodeNameToInfo map[string]*schedulercache.NodeInfo,        potentialNodes []*v1.Node,        predicates map[string]algorithm.FitPredicate,        metadataProducer algorithm.PredicateMetadataProducer,) (map[*v1.Node][]*v1.Pod, error) {        nodeNameToPods := map[*v1.Node][]*v1.Pod{}        var resultLock sync.Mutex        // We can use the same metadata producer for all nodes.        meta := metadataProducer(pod, nodeNameToInfo)        checkNode := func(i int) {                nodeName := potentialNodes[i].Name                var metaCopy algorithm.PredicateMetadata                if meta != nil {                        metaCopy = meta.ShallowCopy()                }                pods, fits := selectVictimsOnNode(pod, metaCopy, nodeNameToInfo[nodeName], predicates)                if fits {                        resultLock.Lock()                        nodeNameToPods[potentialNodes[i]] = pods                        resultLock.Unlock()                }        }        workqueue.Parallelize(16, len(potentialNodes), checkNode)        return nodeNameToPods, nil}


      plugin/pkg/scheduler/core/generic_scheduler.go:659func selectVictimsOnNode(        pod *v1.Pod,        meta algorithm.PredicateMetadata,        nodeInfo *schedulercache.NodeInfo,        fitPredicates map[string]algorithm.FitPredicate) ([]*v1.Pod, bool) {        potentialVictims := util.SortableList{CompFunc: util.HigherPriorityPod}        nodeInfoCopy := nodeInfo.Clone()        removePod := func(rp *v1.Pod) {                nodeInfoCopy.RemovePod(rp)                if meta != nil {                        meta.RemovePod(rp)                }        }        addPod := func(ap *v1.Pod) {                nodeInfoCopy.AddPod(ap)                if meta != nil {                        meta.AddPod(ap, nodeInfoCopy)                }        }        // As the first step, remove all the lower priority pods from the node and        // check if the given pod can be scheduled.        podPriority := util.GetPodPriority(pod)        for _, p := range nodeInfoCopy.Pods() {                if util.GetPodPriority(p) < podPriority {                        potentialVictims.Items = append(potentialVictims.Items, p)                        removePod(p)                }        }        potentialVictims.Sort()        // If the new pod does not fit after removing all the lower priority pods,        // we are almost done and this node is not suitable for preemption. The only condition        // that we should check is if the "pod" is failing to schedule due to pod affinity        // failure.        // TODO(bsalamat): Consider checking affinity to lower priority pods if feasible with reasonable performance.        if fits, _, err := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, nil); !fits {                if err != nil {                        glog.Warningf("Encountered error while selecting victims on node %v: %v", nodeInfo.Node().Name, err)                }                return nil, false        }        victims := []*v1.Pod{}        // Try to reprieve as many pods as possible starting from the highest priority one.        for _, p := range potentialVictims.Items {                lpp := p.(*v1.Pod)                addPod(lpp)                if fits, _, _ := podFitsOnNode(pod, meta, nodeInfoCopy, fitPredicates, nil); !fits {                        removePod(lpp)                        victims = append(victims, lpp)                        glog.V(5).Infof("Pod %v is a potential preemption victim on node %v.", lpp.Name, nodeInfo.Node().Name)                }        }        return victims, true}


pickOneNodeForPreemption从可行Nodes中找出最合适的一个Node

  • 如果上一步至少找到一个可行node,则调用pickOneNodeForPreemption按照以下逻辑选择一个最合适的node:

    • 选择victims中最高pod优先级最低的那个Node。

    • 如果上一步有不止一个Nodes满足条件,则再对选择所有victims优先级之和最小的那个Node。

    • 如果上一步有不止一个Nodes满足条件,则再选择victims pod数最少的Node。

    • 如果上一步有不止一个Nodes满足条件,则再随机选择一个Node。

    • 以上每一步的Nodes列表,都是基于上一步筛选后的Nodes。

      plugin/pkg/scheduler/core/generic_scheduler.go:501func pickOneNodeForPreemption(nodesToPods map[*v1.Node][]*v1.Pod) *v1.Node {        type nodeScore struct {                node            *v1.Node                highestPriority int32                sumPriorities   int64                numPods         int        }        if len(nodesToPods) == 0 {                return nil        }        minHighestPriority := int32(math.MaxInt32)        minPriorityScores := []*nodeScore{}        for node, pods := range nodesToPods {                if len(pods) == 0 {                        // We found a node that doesn't need any preemption. Return it!                        // This should happen rarely when one or more pods are terminated between                        // the time that scheduler tries to schedule the pod and the time that                        // preemption logic tries to find nodes for preemption.                        return node                }                // highestPodPriority is the highest priority among the victims on this node.                highestPodPriority := util.GetPodPriority(pods[0])                if highestPodPriority < minHighestPriority {                        minHighestPriority = highestPodPriority                        minPriorityScores = nil                }                if highestPodPriority == minHighestPriority {                        minPriorityScores = append(minPriorityScores, &nodeScore{node: node, highestPriority: highestPodPriority, numPods: len(pods)})                }        }        if len(minPriorityScores) == 1 {                return minPriorityScores[0].node        }        // There are a few nodes with minimum highest priority victim. Find the        // smallest sum of priorities.        minSumPriorities := int64(math.MaxInt64)        minSumPriorityScores := []*nodeScore{}        for _, nodeScore := range minPriorityScores {                var sumPriorities int64                for _, pod := range nodesToPods[nodeScore.node] {                        // We add MaxInt32+1 to all priorities to make all of them >= 0. This is                        // needed so that a node with a few pods with negative priority is not                        // picked over a node with a smaller number of pods with the same negative                        // priority (and similar scenarios).                        sumPriorities += int64(util.GetPodPriority(pod)) + int64(math.MaxInt32+1)                }                if sumPriorities < minSumPriorities {                        minSumPriorities = sumPriorities                        minSumPriorityScores = nil                }                nodeScore.sumPriorities = sumPriorities                if sumPriorities == minSumPriorities {                        minSumPriorityScores = append(minSumPriorityScores, nodeScore)                }        }        if len(minSumPriorityScores) == 1 {                return minSumPriorityScores[0].node        }        // There are a few nodes with minimum highest priority victim and sum of priorities.        // Find one with the minimum number of pods.        minNumPods := math.MaxInt32        minNumPodScores := []*nodeScore{}        for _, nodeScore := range minSumPriorityScores {                if nodeScore.numPods < minNumPods {                        minNumPods = nodeScore.numPods                        minNumPodScores = nil                }                if nodeScore.numPods == minNumPods {                        minNumPodScores = append(minNumPodScores, nodeScore)                }        }        // At this point, even if there are more than one node with the same score,        // return the first one.        if len(minNumPodScores) > 0 {                return minNumPodScores[0].node        }        glog.Errorf("Error in logic of node scoring for preemption. We should never reach here!")        return nil}

最合适的Node仍然要交给extender(if configed)检查

  • 如果scheduler配置extender scheduler,则还需要通过invoke nodePassesExtendersForPreemption再次将该pod和(假设)剔除victims的该node交给extender.Filter进行一下检查,只有检查通过了才返回该node作为最终选择的Preempt node。

  • 关于extender的理解,请参考如何对kubernetes scheduler进行二次开发和Kubernetes Scheduler源码分析。其实用的场景不多,现在支持自定义调度器了,就更少需要使用scheduler extender了。

感谢各位的阅读,以上就是"Preemption抢占式调度的方法是什么"的内容了,经过本文的学习后,相信大家对Preemption抢占式调度的方法是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!

0