python绘图中的技巧有哪些
发表于:2025-11-18 作者:千家信息网编辑
千家信息网最后更新 2025年11月18日,这篇文章主要讲解了"python绘图中的技巧有哪些",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"python绘图中的技巧有哪些"吧!数据集:让我们导入
千家信息网最后更新 2025年11月18日python绘图中的技巧有哪些技巧1: plt.subplots()
技巧2: plt.subplot()
技巧3: plt.tight_layout()
技巧4: plt.suptitle()
这篇文章主要讲解了"python绘图中的技巧有哪些",文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习"python绘图中的技巧有哪些"吧!
数据集:
让我们导入包并更新图表的默认设置,为图表添加一点个人风格。 我们将在提示上使用 Seaborn 的内置数据集:
import seaborn as sns # v0.11.2 import matplotlib.pyplot as plt # v3.4.2 sns.set(style='darkgrid', context='talk', palette='rainbow')df = sns.load\_dataset('tips') df.head()
技巧1: plt.subplots()
绘制多个子图的一种简单方法是使用 plt.subplots() 。
这是绘制 2 个并排子图的示例语法:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4)) sns.histplot(data=df, x='tip', ax=ax[0]) sns.boxplot(data=df, x='tip', ax=ax[1]);

在这里,我们在一个图中绘制了两个子图。 我们可以进一步自定义每个子图。
例如,我们可以像这样为每个子图添加标题:
fig, ax = plt.subplots(1, 2, figsize=(10,4)) sns.histplot(data=df, x='tip', ax=ax[0]) ax[0].set\_title("Histogram") sns.boxplot(data=df, x='tip', ax=ax[1]) ax[1].set\_title("Boxplot");在循环中将所有数值变量用同一组图表示:
numerical = df.select\_dtypes('number').columnsfor col in numerical: fig, ax = plt.subplots(1, 2, figsize=(10,4)) sns.histplot(data=df, x=col, ax=ax[0]) sns.boxplot(data=df, x=col, ax=ax[1]);技巧2: plt.subplot()
另一种可视化多个图形的方法是使用 plt.subplot(),末尾没有 s
语法与之前略有不同:
plt.figure(figsize=(10,4)) ax1 = plt.subplot(1,2,1) sns.histplot(data=df, x='tip', ax=ax1) ax2 = plt.subplot(1,2,2) sns.boxplot(data=df, x='tip', ax=ax2);
当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:
plt.figure(figsize=(14,4)) for i, col in enumerate(numerical): ax = plt.subplot(1, len(numerical), i+1) sns.boxplot(data=df, x=col, ax=ax)
我们同样能定制子图形。例如加个title
plt.figure(figsize=(14,4)) for i, col in enumerate(numerical): ax = plt.subplot(1, len(numerical), i+1) sns.boxplot(data=df, x=col, ax=ax) ax.set\_title(f"Boxplot of {col}")通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。
技巧3: plt.tight_layout()
在绘制多个图形时,经常会看到一些子图的标签在它们的相邻子图上重叠,
如下所示:
categorical = df.select\_dtypes('category').columnsplt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax)顶部两个图表的 x 轴上的变量名称被剪掉,右侧图的 y 轴标签与左侧子图重叠.使用plt.tight_layout很方便
plt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax) plt.tight\_layout()
专业 看起来更好了。
技巧4: plt.suptitle()
真个图形添加标题:
plt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax) plt.suptitle('Category counts for all categorical variables') plt.tight\_layout()此外,您可以根据自己的喜好自定义各个图。 例如,您仍然可以为每个子图添加标题。
感谢各位的阅读,以上就是"python绘图中的技巧有哪些"的内容了,经过本文的学习后,相信大家对python绘图中的技巧有哪些这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是,小编将为大家推送更多相关知识点的文章,欢迎关注!
技巧
图形
绘图
多个
方法
不同
个子
图表
标题
学习
两个
内容
变量
情况
数据
有用
标签
语法
图中
相似
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
浙江水性软件开发价格走势
威科法律百科全书数据库
网络安全450字作文
网络技术英语翻译
浅谈怎么学习网络技术
网络技术部竞选稿
软件开发公司没客户
深空之眼服务器共用吗
搭建服务器的软件有那些
数据库加锁
学生对软件开发老师看法
魏秋明网络技术服务部地址
微信公众号软件开发价格
多个人同时连一个数据库
网络安全提出建议
服务器机柜维修项目报价
wind 数据库 手册
浙大远程数据库技术
微信小游戏服务器必须备案吗
数据库系统具有数据的
网络安全周培训稿
塔式服务器
硕士网络安全专业有哪些课程
服务器安全登录方式有哪些
网络安全落实责任机制
大型工业软件开发有经验的人
咪咕动漫软件开发支撑方
第七届首都市网络安全日
直播间虚拟人气软件开发教程
达西软件开发