pytorch怎样实现特征图可视化
发表于:2025-12-02 作者:千家信息网编辑
千家信息网最后更新 2025年12月02日,pytorch怎样实现特征图可视化,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。是不是要这样的效果技术要点 1.选择一层
千家信息网最后更新 2025年12月02日pytorch怎样实现特征图可视化
pytorch怎样实现特征图可视化,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
是不是要这样的效果
技术要点 1.选择一层网络,将图片的tensor放进去 2.将网络的输出plt.imshow
代码可直接复制使用,需要改的就是你的图片位置
import torchfrom torchvision import models, transformsfrom PIL import Imageimport matplotlib.pyplot as pltimport numpy as npimport scipy.miscplt.rcParams['font.sans-serif']=['STSong']import torchvision.models as modelsmodel = models.alexnet(pretrained=True)#1.模型查看# print(model)#可以看出网络一共有3层,两个Sequential()+avgpool# model_features = list(model.children())# print(model_features[0][3])#取第0层Sequential()中的第四层# for index,layer in enumerate(model_features[0]):# print(layer)#2. 导入数据# 以RGB格式打开图像# Pytorch DataLoader就是使用PIL所读取的图像格式# 建议就用这种方法读取图像,当读入灰度图像时convert('')def get_image_info(image_dir):image_info = Image.open(image_dir).convert('RGB')#是一幅图片# 数据预处理方法image_transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])image_info = image_transform(image_info)#torch.Size([3, 224, 224])image_info = image_info.unsqueeze(0)#torch.Size([1, 3, 224, 224])因为model的输入要求是4维,所以变成4维return image_info#变成tensor数据#2. 获取第k层的特征图'''args:k:定义提取第几层的feature mapx:图片的tensormodel_layer:是一个Sequential()特征层'''def get_k_layer_feature_map(model_layer, k, x):with torch.no_grad():for index, layer in enumerate(model_layer):#model的第一个Sequential()是有多层,所以遍历x = layer(x)#torch.Size([1, 64, 55, 55])生成了64个通道if k == index:return x# 可视化特征图def show_feature_map(feature_map):#feature_map=torch.Size([1, 64, 55, 55]),feature_map[0].shape=torch.Size([64, 55, 55]) # feature_map[2].shape out of boundsfeature_map = feature_map.squeeze(0)#压缩成torch.Size([64, 55, 55])feature_map_num = feature_map.shape[0]#返回通道数row_num = np.ceil(np.sqrt(feature_map_num))#8plt.figure()for index in range(1, feature_map_num + 1):#通过遍历的方式,将64个通道的tensor拿出plt.subplot(row_num, row_num, index)plt.imshow(feature_map[index - 1], cmap='gray')#feature_map[0].shape=torch.Size([55, 55])plt.axis('off')scipy.misc.imsave( 'feature_map_save//'+str(index) + ".png", feature_map[index - 1])plt.show()if __name__ == '__main__':image_dir = r"car_logol.png"# 定义提取第几层的feature mapk = 0image_info = get_image_info(image_dir)model = models.alexnet(pretrained=True)model_layer= list(model.children())model_layer=model_layer[0]#这里选择model的第一个Sequential()feature_map = get_k_layer_feature_map(model_layer, k, image_info)show_feature_map(feature_map)彩色图显示
#在show_feature_map函数中加上一句,tensor数据变成Img的操作image_PIL=transforms.ToPILImage()(feature_map[index - 1])

如果对于matplotlib不熟练
matplotlib绘制多个子图(汉字标题,XY轴标签)& PIL.Image 11行读取文件夹中照片
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注行业资讯频道,感谢您对的支持。
特征
图像
图片
数据
网络
通道
可视化
就是
方法
格式
帮助
选择
清楚
熟练
两个
代码
位置
函数
多个
多层
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
可以还原到数据库的文件
具有丰富的软件开发经验
linux服务器磁盘满怎么解决
平凉展厅互动软件开发
qq电脑开机加速服务器
不履行网络安全义务的罚
铁路网络安全协议模板
苏州常见软件开发售后服务
岳阳网络安全保障技术更强
信创软件开发经验
合肥求职招聘软件开发定制公司
远程服务器打不了汉字
深信服软件开发面试牛客网
4200怎么设置服务器储存
b站账号解绑服务器出错
阿里云服务器在线客服
消防网络安全直播公开课
网络安全手段是什么
微信小程序请求宝塔数据库
生日服务器
软件开发人员需求
现在新的网络技术
如何卸载安全中心服务器
戴尔虚拟服务器怎么进去
软件开发交接内容
提取数据库密码
银行网络安全转培训报告
cp软件开发者
注册信息怎么传服务器数据库
安装ug12.0启动服务器失败