如何利用Jupyter Notekook做初步分析
发表于:2025-11-07 作者:千家信息网编辑
千家信息网最后更新 2025年11月07日,这篇文章主要介绍如何利用Jupyter Notekook做初步分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!最近一段时间都是Jupyter Notebook做策略的最初版本
千家信息网最后更新 2025年11月07日如何利用Jupyter Notekook做初步分析
这篇文章主要介绍如何利用Jupyter Notekook做初步分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
最近一段时间都是Jupyter Notebook做策略的最初版本设计,就是行情导入画图一类。
之前做个dataframe做分析容易,这个算是简化版本。
新建一个DataAnalyzer 类,这个简单很多,支持从csv和mongodb导入行情数据,和从1分钟k线整合不同分钟k线
下面是导入1分钟螺纹钢数据,整合为5分钟K线
from pymongo import MongoClient, ASCENDINGimport pandas as pdimport numpy as npfrom datetime import datetimeimport talibimport matplotlib.pyplot as pltimport scipy.stats as st%matplotlib inline%config InlineBackend.figure_format = 'retina'class DataAnalyzer(object): """ """ def __init__(self, exportpath="C:\Project\\", datformat=['datetime', 'high', 'low', 'open', 'close','volume']): self.mongohost = None self.mongoport = None self.db = None self.collection = None self.df = pd.DataFrame() self.exportpath = exportpath self.datformat = datformat self.startBar = 2 self.endBar = 12 self.step = 2 self.pValue = 0.015 def db2df(self, db, collection, start, end, mongohost="localhost", mongoport=27017, export2csv=False): """读取MongoDB数据库行情记录,输出到Dataframe中""" self.mongohost = mongohost self.mongoport = mongoport self.db = db self.collection = collection dbClient = MongoClient(self.mongohost, self.mongoport, connectTimeoutMS=500) db = dbClient[self.db] cursor = db[self.collection].find({'datetime':{'$gte':start, '$lt':end}}).sort("datetime",ASCENDING) self.df = pd.DataFrame(list(cursor)) self.df = self.df[self.datformat] self.df = self.df.reset_index(drop=True) path = self.exportpath + self.collection + ".csv" if export2csv == True: self.df.to_csv(path, index=True, header=True) return self.df def csv2df(self, csvpath, dataname="csv_data", export2csv=False): """读取csv行情数据,输入到Dataframe中""" csv_df = pd.read_csv(csvpath) self.df = csv_df[self.datformat] self.df["datetime"] = pd.to_datetime(self.df['datetime']) # self.df["high"] = self.df['high'].astype(float) # self.df["low"] = self.df['low'].astype(float) # self.df["open"] = self.df['open'].astype(float) # self.df["close"] = self.df['close'].astype(float) # self.df["volume"] = self.df['volume'].astype(int) self.df = self.df.reset_index(drop=True) path = self.exportpath + dataname + ".csv" if export2csv == True: self.df.to_csv(path, index=True, header=True) return self.df def df2Barmin(self, inputdf, barmins, crossmin=1, export2csv=False): """输入分钟k线dataframe数据,合并多多种数据,例如三分钟/5分钟等,如果开始时间是9点1分,crossmin = 0;如果是9点0分,crossmin为1""" dfbarmin = pd.DataFrame() highBarMin = 0 lowBarMin = 0 openBarMin = 0 volumeBarmin = 0 datetime = 0 for i in range(0, len(inputdf) - 1): bar = inputdf.iloc[i, :].to_dict() if openBarMin == 0: openBarmin = bar["open"] if highBarMin == 0: highBarMin = bar["high"] else: highBarMin = max(bar["high"], highBarMin) if lowBarMin == 0: lowBarMin = bar["low"] else: lowBarMin = min(bar["low"], lowBarMin) closeBarMin = bar["close"] datetime = bar["datetime"] volumeBarmin += int(bar["volume"]) # X分钟已经走完 if not (bar["datetime"].minute + crossmin) % barmins: # 可以用X整除 # 生成上一X分钟K线的时间戳 barMin = {'datetime': datetime, 'high': highBarMin, 'low': lowBarMin, 'open': openBarmin, 'close': closeBarMin, 'volume' : volumeBarmin} dfbarmin = dfbarmin.append(barMin, ignore_index=True) highBarMin = 0 lowBarMin = 0 openBarMin = 0 volumeBarmin = 0 if export2csv == True: dfbarmin.to_csv(self.exportpath + "bar" + str(barmins)+ str(self.collection) + ".csv", index=True, header=True) return dfbarminexportpath = "C:\\Project\\"DA = DataAnalyzer(exportpath)#数据库导入start = datetime.strptime("20190920", '%Y%m%d')end = datetime.now()dfrb8888 = DA.db2df(db="VnTrader_1Min_Db", collection="rb8888", start = start, end = end,export2csv=True)dfrb5min = DA.df2Barmin(dfrb8888,5,crossmin=1, export2csv=True)dfrb5min.tail()2. 计算5分钟K线的参照,包括标准差,rsi,5分钟均线,和40分钟均线
logdata = pd.DataFrame()logdata['close'] =(dfrb5min['close'])# logdata['tr'] = talib.ATR(np.array(dfrb8888['high']), np.array(dfrb8888['low']), np.array(dfrb8888['close']) ,1)# logdata['atr'] = talib.ATR(np.array(dfrb8888['high']), np.array(dfrb8888['low']), np.array(dfrb8888['close']) ,20)logdata['std20'] = talib.STDDEV( np.array(dfrb5min['close']) ,20)logdata['rsi30'] = talib.RSI(np.array(dfrb5min['close']) ,30)logdata['sma5'] = talib.SMA(np.array(dfrb5min['close']) ,5)logdata['sma40'] = talib.SMA(np.array(dfrb5min['close']) ,40)logdata.plot(subplots=True,figsize=(18,16))
3. 使用快慢均线策略,显示买入卖出点
closeArray = np.array(logdata['close'])listup,listdown = [],[]for i in range(1,len(logdata['close'])): if logdata.loc[i,'sma5'] > logdata.loc[i,'sma40'] and logdata.loc[i-1,'sma5'] < logdata.loc[i-1,'sma40']: listup.append(i) elif logdata.loc[i,'sma5'] < logdata.loc[i,'sma40'] and logdata.loc[i-1,'sma5'] > logdata.loc[i-1,'sma40']: listdown.append(i)fig=plt.figure(figsize=(18,6))plt.plot(closeArray, color='y', lw=2.)plt.plot(closeArray, '^', markersize=5, color='r', label='UP signal', markevery=listup)plt.plot(closeArray, 'v', markersize=5, color='g', label='DOWN signal', markevery=listdown)plt.legend()plt.show()
以上是"如何利用Jupyter Notekook做初步分析"这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注行业资讯频道!
数据
行情
分析
均线
时间
内容
数据库
版本
策略
篇文章
整合
输入
不同
价值
兴趣
多种
小伙
小伙伴
就是
快慢
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
南充应用软件开发
高稳定性的网络安全等保
什么游戏可以自己搭建服务器
网络技术学习计划表小学
中国国家数据库怎么进去
软件开发怎么发论文
陕西字节互联网科技有限公司
融合服务器套什么定额
数据库落标率
mtk 软件开发
中国网络安全法的使用范围
足球大脑数据库
济南虎为网络技术有限公司
安仁电脑软件开发薪资
金蝶服务器管理用户
专利数据库的必要性
南京品质网络技术销售厂家
项目经理发展前景与软件开发
空间数据库技术学院
公主连结台服可以换服务器么
济南联祥网络技术公司
无法驱动安全中心服务器
ivms4200人脸识别服务器
数据库 自联结模式 例子
汕尾数据链软件开发销售厂
江西学习软件开发
为什么打不开服务器管理器
贵州智慧城管软件开发公司
工业园区口碑好服务器优质推荐
互联网科技与人民群众生活