怎样使用TPU训练模型
发表于:2025-12-03 作者:千家信息网编辑
千家信息网最后更新 2025年12月03日,今天就跟大家聊聊有关怎样使用TPU训练模型,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。如果想尝试使用Google Colab上的TPU来训练
千家信息网最后更新 2025年12月03日怎样使用TPU训练模型
今天就跟大家聊聊有关怎样使用TPU训练模型,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
如果想尝试使用Google Colab上的TPU来训练模型,也是非常方便,仅需添加6行代码。
在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 TPU
注:以下代码只能在Colab 上才能正确执行。
可通过以下colab链接测试效果《tf_TPU》:
https://colab.research.google.com/drive/1XCIhATyE1R7lq6uwFlYlRsUr5d9_-r1s
%tensorflow_version 2.x
import tensorflow as tf
print(tf.__version__)
from tensorflow.keras import *
一,准备数据
MAX_LEN = 300
BATCH_SIZE = 32
(x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
x_test = preprocessing.sequence.pad_sequences(x_test,maxlen=MAX_LEN)
MAX_WORDS = x_train.max()+1
CAT_NUM = y_train.max()+1
ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train)) \
.shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
.prefetch(tf.data.experimental.AUTOTUNE).cache()
ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) \
.shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
.prefetch(tf.data.experimental.AUTOTUNE).cache()
二,定义模型
tf.keras.backend.clear_session()
def create_model():
model = models.Sequential()
model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
model.add(layers.MaxPool1D(2))
model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
model.add(layers.MaxPool1D(2))
model.add(layers.Flatten())
model.add(layers.Dense(CAT_NUM,activation = "softmax"))
return(model)
def compile_model(model):
model.compile(optimizer=optimizers.Nadam(),
loss=losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)])
return(model)
三,训练模型
#增加以下6行代码
import os
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
with strategy.scope():
model = create_model()
model.summary()
model = compile_model(model)

history = model.fit(ds_train,validation_data = ds_test,epochs = 10)
看完上述内容,你们对怎样使用TPU训练模型有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注行业资讯频道,感谢大家的支持。
模型
训练
代码
内容
笔记
笔记本
仅需
加速器
效果
数据
更多
知识
硬件
篇文章
行业
资讯
资讯频道
链接
频道
可通
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
linux中安全数据库
棋牌游戏软件开发扫雷
app 软件开发报价
临汾触摸签名软件开发公司
服务器突然不能动了
网络技术的优势
cdn节点和服务器百科
通过不同域名 多个数据库
手游服务器要多少钱
服务器eos管理
职工数据库怎么打开
数据库记录体
网络安全包括哪4个内容
数据库都放什么内容
计算机三级的网络技术难吗
Pgsql数据库找不到表
三级网络技术教程知识点
超宇宙龙珠服务器
大数据库扩
编译wincc服务数据库
临汾触摸签名软件开发公司
检查服务器认证
服务器系统维护招聘
如何做企业内部人才数据库
许昌软件开发制作
数据库计算数据量
网络安全教育班会记录
chns的数据库
软件开发源代码和版权甲方乙方
网络安全体会感悟400字