python机器学习sklearn怎么实现识别数字
发表于:2025-11-11 作者:千家信息网编辑
千家信息网最后更新 2025年11月11日,这篇文章主要介绍了python机器学习sklearn怎么实现识别数字的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python机器学习sklearn怎么实现识别数字文章都
千家信息网最后更新 2025年11月11日python机器学习sklearn怎么实现识别数字
这篇文章主要介绍了python机器学习sklearn怎么实现识别数字的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python机器学习sklearn怎么实现识别数字文章都会有所收获,下面我们一起来看看吧。
数据处理
数据分离
因为我们打开我们的的学习数据集,最后一项是我们的真实数值,看过小唐上一篇的人都知道,老规矩先进行拆分,前面的特征放一块,后面的真实值放一块,同时由于数据没有列名,我们选择使用iloc[]来实现分离
def shuju(tr_path,ts_path,sep='\t'): train=pd.read_csv(tr_path,sep=sep) test=pd.read_csv(ts_path,sep=sep) #特征和结果分离 train_features=train.iloc[:,:-1].values train_labels=train.iloc[:,-1].values test_features = test.iloc[:, :-1].values test_labels = test.iloc[:, -1].values return train_features,test_features,train_labels,test_labels
训练数据
我们在这里直接使用sklearn函数,通过选择模型,然后直接生成其识别规则
#训练数据def train_tree(*data): x_train, x_test, y_train, y_test=data clf=DecisionTreeClassifier() clf.fit(x_train,y_train) print("学习模型预测成绩:{:.4f}".format(clf.score(x_train, y_train))) print("实际模型预测成绩:{:.4f}".format(clf.score(x_test, y_test))) #返回学习模型 return clf数据可视化
为了让我们的观察更加直观,我们还可以使用matplotlib来进行观测
def plot_imafe(test,test_labels,preds): plt.ion() plt.show() for i in range(50): label,pred=test_labels[i],preds[i] title='实际值:{},predict{}'.format(label,pred) img=test[i].reshape(28,28) plt.imshow(img,cmap="binary") plt.title(title) plt.show() print('done')结果


完整代码
import pandas as pdfrom sklearn.tree import DecisionTreeClassifierimport matplotlib.pyplot as pltdef shuju(tr_path,ts_path,sep='\t'): train=pd.read_csv(tr_path,sep=sep) test=pd.read_csv(ts_path,sep=sep) #特征和结果分离 train_features=train.iloc[:,:-1].values train_labels=train.iloc[:,-1].values test_features = test.iloc[:, :-1].values test_labels = test.iloc[:, -1].values return train_features,test_features,train_labels,test_labels#训练数据def train_tree(*data): x_train, x_test, y_train, y_test=data clf=DecisionTreeClassifier() clf.fit(x_train,y_train) print("学习模型预测成绩:{:.4f}".format(clf.score(x_train, y_train))) print("实际模型预测成绩:{:.4f}".format(clf.score(x_test, y_test))) #返回学习模型 return clfdef plot_imafe(test,test_labels,preds): plt.ion() plt.show() for i in range(50): label,pred=test_labels[i],preds[i] title='实际值:{},predict{}'.format(label,pred) img=test[i].reshape(28,28) plt.imshow(img,cmap="binary") plt.title(title) plt.show() print('done')train_features,test_features,train_labels,test_labels=shuju(r"C:\Users\twy\PycharmProjects\1\train_images.csv",r"C:\Users\twy\PycharmProjects\1\test_images.csv")clf=train_tree(train_features,test_features,train_labels,test_labels)preds=clf.predict(test_features)plot_imafe(test_features,test_labels,preds)关于"python机器学习sklearn怎么实现识别数字"这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对"python机器学习sklearn怎么实现识别数字"知识都有一定的了解,大家如果还想学习更多知识,欢迎关注行业资讯频道。
学习
数据
模型
数字
机器
实际
成绩
特征
知识
结果
训练
内容
篇文章
选择
直观
代码
价值
函数
同时
操作简单
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
四川电脑软件开发要多少钱
服务端软件开发监听框架
idea怎么改默认数据库
网络网络安全法
互联网科技的概念股
网易邮件服务器pop是什么意思
福建工业软件开发定做价格
怎么查询网站服务器是多少钱的
便携式录播一体机属于服务器范围
服务器怎么设置离线模式
鼎浩网络技术有限公司
binlog数据库同步
分布式服务器如何使用
j2se用什么软件开发
计算机网络技术自上向下
用友t6数据库安装教程
本地远程服务器
哪个前端软件开发好
软件开发绩效目标设定
甘肃日报林铎在网络安全
我们如何学习网络技术
访问企业需要什么服务器
西安公办网络技术学校
数据库表中性别的约束条件
基于网络安全
网络安全集成与服务
重庆服务器防火墙哪家好
普陀区常规网络技术服务售后服务
常熟便宜服务器高质量的选择
极路由 打印服务器