PyTorch批量可视化怎么实现
发表于:2025-12-01 作者:千家信息网编辑
千家信息网最后更新 2025年12月01日,本篇内容主要讲解"PyTorch批量可视化怎么实现",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"PyTorch批量可视化怎么实现"吧!1. 可视化任意网络
千家信息网最后更新 2025年12月01日PyTorch批量可视化怎么实现
本篇内容主要讲解"PyTorch批量可视化怎么实现",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"PyTorch批量可视化怎么实现"吧!
1. 可视化任意网络模型训练的Loss,及Accuracy曲线图,Train与Valid必须在同一个图中
2. 采用make_grid,对任意图像训练输入数据进行批量可视化
1. 准确率曲线
未在服务器跑, 只读
# -*- coding:utf-8 -*-"""@brief : 监控loss, accuracy, weights, gradients"""import osimport numpy as npimport torchimport torch.nn as nnfrom torch.utils.data import DataLoaderimport torchvision.transforms as transformsfrom torch.utils.tensorboard import SummaryWriterimport torch.optim as optimfrom matplotlib import pyplot as pltfrom model.lenet import LeNetfrom tools.my_dataset import RMBDatasetfrom tools.common_tools2 import set_seedset_seed() # 设置随机种子rmb_label = {"1": 0, "100": 1}# 参数设置MAX_EPOCH = 10BATCH_SIZE = 16LR = 0.01log_interval = 10val_interval = 1# ============================ step 1/5 数据 ============================split_dir = os.path.join("..", "data", "rmb_split")train_dir = os.path.join(split_dir, "train")valid_dir = os.path.join(split_dir, "valid")norm_mean = [0.485, 0.456, 0.406]norm_std = [0.229, 0.224, 0.225]train_transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.RandomCrop(32, padding=4), transforms.RandomGrayscale(p=0.8), transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])valid_transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])# 构建MyDataset实例train_data = RMBDataset(data_dir=train_dir, transform=train_transform)valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)# 构建DataLodertrain_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)# ============================ step 2/5 模型 ============================net = LeNet(classes=2)net.initialize_weights()# ============================ step 3/5 损失函数 ============================criterion = nn.CrossEntropyLoss() # 选择损失函数# ============================ step 4/5 优化器 ============================optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 选择优化器scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 设置学习率下降策略# ============================ step 5/5 训练 ============================train_curve = list()valid_curve = list()iter_count = 0# 构建 SummaryWriterwriter = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")for epoch in range(MAX_EPOCH): loss_mean = 0. correct = 0. total = 0. net.train() for i, data in enumerate(train_loader): iter_count += 1 # forward inputs, labels = data outputs = net(inputs) # backward optimizer.zero_grad() loss = criterion(outputs, labels) loss.backward() # update weights optimizer.step() # 统计分类情况 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).squeeze().sum().numpy() # 打印训练信息 loss_mean += loss.item() train_curve.append(loss.item()) if (i + 1) % log_interval == 0: loss_mean = loss_mean / log_interval print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format( epoch, MAX_EPOCH, i + 1, len(train_loader), loss_mean, correct / total)) loss_mean = 0. # 记录数据,保存于event file writer.add_scalars("Loss", {"Train": loss.item()}, iter_count) writer.add_scalars("Accuracy", {"Train": correct / total}, iter_count) # 每个epoch,记录梯度,权值 for name, param in net.named_parameters(): writer.add_histogram(name + '_grad', param.grad, epoch) writer.add_histogram(name + '_data', param, epoch) scheduler.step() # 更新学习率 # validate the model if (epoch + 1) % val_interval == 0: correct_val = 0. total_val = 0. loss_val = 0. net.eval() with torch.no_grad(): for j, data in enumerate(valid_loader): inputs, labels = data outputs = net(inputs) loss = criterion(outputs, labels) _, predicted = torch.max(outputs.data, 1) total_val += labels.size(0) correct_val += (predicted == labels).squeeze().sum().numpy() loss_val += loss.item() valid_curve.append(loss.item()) print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format( epoch, MAX_EPOCH, j + 1, len(valid_loader), loss_val, correct / total)) # 记录数据,保存于event file writer.add_scalars("Loss", {"Valid": np.mean(valid_curve)}, iter_count) writer.add_scalars("Accuracy", {"Valid": correct / total}, iter_count)train_x = range(len(train_curve))train_y = train_curvetrain_iters = len(train_loader)valid_x = np.arange(1, len(valid_curve) + 1) * train_iters * val_interval # 由于valid中记录的是epochloss,需要对记录点进行转换到iterationsvalid_y = valid_curveplt.plot(train_x, train_y, label='Train')plt.plot(valid_x, valid_y, label='Valid')plt.legend(loc='upper right')plt.ylabel('loss value')plt.xlabel('Iteration')plt.show()2. 批量可视化
未在服务器跑, 只读
# -*- coding:utf-8 -*-"""@brief : 卷积核和特征图的可视化"""import torch.nn as nnfrom PIL import Imageimport torchvision.transforms as transformsfrom torch.utils.tensorboard import SummaryWriterimport torchvision.utils as vutilsfrom tools.common_tools import set_seedimport torchvision.models as modelsset_seed(1) # 设置随机种子# ----------------------------------- kernel visualization -----------------------------------# flag = 0flag = 1if flag: writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix") alexnet = models.alexnet(pretrained=True) kernel_num = -1 vis_max = 1 for sub_module in alexnet.modules(): if isinstance(sub_module, nn.Conv2d): kernel_num += 1 if kernel_num > vis_max: break kernels = sub_module.weight c_out, c_int, k_w, k_h = tuple(kernels.shape) for o_idx in range(c_out): kernel_idx = kernels[o_idx, :, :, :].unsqueeze(1) # make_grid需要 BCHW,这里拓展C维度 kernel_grid = vutils.make_grid(kernel_idx, normalize=True, scale_each=True, nrow=c_int) writer.add_image('{}_Convlayer_split_in_channel'.format(kernel_num), kernel_grid, global_step=o_idx) kernel_all = kernels.view(-1, 3, k_h, k_w) # 3, h, w kernel_grid = vutils.make_grid(kernel_all, normalize=True, scale_each=True, nrow=8) # c, h, w writer.add_image('{}_all'.format(kernel_num), kernel_grid, global_step=322) print("{}_convlayer shape:{}".format(kernel_num, tuple(kernels.shape))) writer.close()# ----------------------------------- feature map visualization -----------------------------------# flag = 0flag = 1if flag: writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix") # 数据 path_img = "./lena.png" # your path to image normMean = [0.49139968, 0.48215827, 0.44653124] normStd = [0.24703233, 0.24348505, 0.26158768] norm_transform = transforms.Normalize(normMean, normStd) img_transforms = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), norm_transform ]) img_pil = Image.open(path_img).convert('RGB') if img_transforms is not None: img_tensor = img_transforms(img_pil) img_tensor.unsqueeze_(0) # chw --> bchw # 模型 alexnet = models.alexnet(pretrained=True) # forward convlayer1 = alexnet.features[0] fmap_1 = convlayer1(img_tensor) # 预处理 fmap_1.transpose_(0, 1) # bchw=(1, 64, 55, 55) --> (64, 1, 55, 55) fmap_1_grid = vutils.make_grid(fmap_1, normalize=True, scale_each=True, nrow=8) writer.add_image('feature map in conv1', fmap_1_grid, global_step=322) writer.close()到此,相信大家对"PyTorch批量可视化怎么实现"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
可视化
数据
学习
训练
模型
内容
函数
损失
曲线
服务器
种子
utf-8
服务
选择
实用
更深
信息
兴趣
准确率
卷积
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
广州美啊网络技术有限公司好吗
重庆飞邮网络技术有限公司
和记山东网络技术有限公司
微擎数据库登录密码
服务器硬盘 ssd
人工智能是网络技术吗
六月新法网络安全法
软件开发双方
木易网络技术有限公司
非关系型数据库缺陷
搭建本地网站服务器费用
java做数据库的源代码
西安石油大学网络安全
2016民航网络技术员大赛
全文数据库有
对联合国提建议关于网络安全
oracle 数据库信息
昆山一站式网络技术包括什么
php导入阿里数据库
网络安全主题班会教案小学
数据库为什么会产生慢日志
软件开发正常维护时间
参数联动的数据库怎样设置
暗月网络安全博客
传统服务器硬件信息
赣州电脑编程软件开发学校
qq服务器可以干什么
中国网络安全年会车联网
黄山徽海网络技术有限公司
我的世界服务器不用登录