python模拟支持向量机举例分析
发表于:2025-12-03 作者:千家信息网编辑
千家信息网最后更新 2025年12月03日,本篇内容介绍了"python模拟支持向量机举例分析"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!思想
千家信息网最后更新 2025年12月03日python模拟支持向量机举例分析
本篇内容介绍了"python模拟支持向量机举例分析"的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
思想简述
1、线性可分支持向量机,或硬间隔支持向量机。构建它的条件是训练数据线性可分。其学习策略是最大间隔法。可以表示为凸二次规划问题
2、现实中训练数据是线性可分的情形较少,训练数据往往是近似线性可分的,这时使用线性支持向量机,或软间隔支持向量机。线性支持向量机是最基本的支持向量机。对于噪声或例外,通过引入松弛变量,使其"可分",
3、对于输入空间中的非线性分类问题,可以通过非线性变换将它转化为某个高维特征空间中的线性分类问题,在高维特征空间中学习线性支持向量机。由于在线性支持向量机学习的对偶问题里,目标函数和分类决策函数都只涉及实例与实例之间的内积,所以不需要显式地指定非线性变换,而是用核函数来替换当中的内积。核函数表示,通过一个非线性转换后的两个实例间的内积。
4、SMO算法。SMO算法是支持向量机学习的一种快速算法,其特点是不断地将原二次规划问题分解为只有两个变量的二次规划子问题,并对子问题进行解析求解,直到所有变量满足KKT条件为止。这样通过启发式的方法得到原二次规划问题的最优解。因为子问题有解析解,所以每次计算子问题都很快,虽然计算子问题次数很多,但在总体上还是高效的。
程序
sklearn中已有相关包文件,直接调用
import numpy as npimport pandas as pdfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitimport matplotlib.pyplot as pltfrom sklearn.svm import SVCdef create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'label' ] data = np.array(df.iloc[:100, [0, 1, -1]]) for i in range(len(data)): if data[i, -1] == 0: data[i, -1] = -1 # print(data) return data[:, :2], data[:, -1]X, y = create_data()X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)clf = SVC()# 下边的参数设置了线性模拟,设置之后才可以画出模拟函数的图# clf = SVC(kernel='linear')clf.fit(X_train, y_train)print("训练集评分:{}".format(str(clf.score(X_test, y_test)*100)+"%"))# 上边设置线性之后,下边的注释代码才能使用# x_points = np.arange(4, 8)# y_ = -(clf.coef_[0][0]*x_points + clf.intercept_)/clf.coef_[0][1]# plt.plot(x_points, y_)plt.scatter(X[:50, 0], X[:50, 1], label='-1')plt.scatter(X[50:, 0], X[50:, 1], label='1')plt.legend()plt.show()结果:
数据点:
线性模拟结果图:
训练集评分:100.0%
自己编写SVM类
import numpy as npimport pandas as pdfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitimport matplotlib.pyplot as pltdef create_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = [ 'sepal length', 'sepal width', 'petal length', 'petal width', 'label' ] data = np.array(df.iloc[:100, [0, 1, -1]]) for i in range(len(data)): if data[i, -1] == 0: data[i, -1] = -1 # print(data) return data[:, :2], data[:, -1]X, y = create_data()X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)plt.scatter(X[:50, 0], X[:50, 1], label='-1')plt.scatter(X[50:, 0], X[50:, 1], label='1')plt.legend()plt.show()class SVM: def __init__(self, max_iter=100, kernel='linear'): self.max_iter = max_iter self._kernel = kernel def init_args(self, features, labels): self.m, self.n = features.shape self.X = features self.Y = labels self.b = 0.0 # 将Ei保存在一个列表里 self.alpha = np.ones(self.m) self.E = [self._E(i) for i in range(self.m)] # 松弛变量 self.C = 1.0 def _KKT(self, i): y_g = self._g(i) * self.Y[i] if self.alpha[i] == 0: return y_g >= 1 elif 0 < self.alpha[i] < self.C: return y_g == 1 else: return y_g <= 1 # g(x)预测值,输入xi(X[i]) def _g(self, i): r = self.b for j in range(self.m): r += self.alpha[j] * self.Y[j] * self.kernel(self.X[i], self.X[j]) return r # 核函数 def kernel(self, x1, x2): if self._kernel == 'linear': return sum([x1[k] * x2[k] for k in range(self.n)]) elif self._kernel == 'poly': return (sum([x1[k] * x2[k] for k in range(self.n)]) + 1)**2 return 0 # E(x)为g(x)对输入x的预测值和y的差 def _E(self, i): return self._g(i) - self.Y[i] def _init_alpha(self): # 外层循环首先遍历所有满足0= 0: j = min(range(self.m), key=lambda x: self.E[x]) else: j = max(range(self.m), key=lambda x: self.E[x]) return i, j def _compare(self, _alpha, L, H): if _alpha > H: return H elif _alpha < L: return L else: return _alpha def fit(self, features, labels): self.init_args(features, labels) for t in range(self.max_iter): # train i1, i2 = self._init_alpha() # 边界 if self.Y[i1] == self.Y[i2]: L = max(0, self.alpha[i1] + self.alpha[i2] - self.C) H = min(self.C, self.alpha[i1] + self.alpha[i2]) else: L = max(0, self.alpha[i2] - self.alpha[i1]) H = min(self.C, self.C + self.alpha[i2] - self.alpha[i1]) E1 = self.E[i1] E2 = self.E[i2] # eta=K11+K22-2K12 eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel( self.X[i2], self.X[i2]) - 2 * self.kernel(self.X[i1], self.X[i2]) if eta <= 0: # print('eta <= 0') continue alpha2_new_unc = self.alpha[i2] + self.Y[i2] * ( E1 - E2) / eta #此处有修改,根据书上应该是E1 - E2,书上130-131页 alpha2_new = self._compare(alpha2_new_unc, L, H) alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * ( self.alpha[i2] - alpha2_new) b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * ( alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel( self.X[i2], self.X[i1]) * (alpha2_new - self.alpha[i2]) + self.b b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * ( alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel( self.X[i2], self.X[i2]) * (alpha2_new - self.alpha[i2]) + self.b if 0 < alpha1_new < self.C: b_new = b1_new elif 0 < alpha2_new < self.C: b_new = b2_new else: # 选择中点 b_new = (b1_new + b2_new) / 2 # 更新参数 self.alpha[i1] = alpha1_new self.alpha[i2] = alpha2_new self.b = b_new self.E[i1] = self._E(i1) self.E[i2] = self._E(i2) return 'train done!' def predict(self, data): r = self.b for i in range(self.m): r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i]) return 1 if r > 0 else -1 def score(self, X_test, y_test): right_count = 0 for i in range(len(X_test)): result = self.predict(X_test[i]) if result == y_test[i]: right_count += 1 return right_count / len(X_test) def _weight(self): # linear model yx = self.Y.reshape(-1, 1) * self.X self.w = np.dot(yx.T, self.alpha) return self.wsvm = SVM(max_iter=200)svm.fit(X_train, y_train)print("评分:{}".format(svm.score(X_test, y_test)))
"python模拟支持向量机举例分析"的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注网站,小编将为大家输出更多高质量的实用文章!
向量
线性
问题
支持
函数
训练
变量
数据
非线性
学习
规划
内积
实例
空间
算法
分类
评分
输入
分析
松弛
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
区块链服务器提供商
互联网科技新闻头条
用友会计网络技术有限公司
网络安全职称
服务器vrm灯
网络安全靠人民主题班会记录
湖北网络安全存储服务器机箱采购
免费的服务器管理面板
警察国家网络安全宣传
河南专业软件开发哪家实惠
金华公司网络安全准入控制哪家好
常州服务器机房搭建哪家好
网络安全 任重道远
联通ntp服务器异常咋办
云牵巨邦网络技术有
python网络安全模式
关于5G网络技术的说明文
高青服务管理crm软件开发
web服务器搭建常见问题
gdc 服务器
lol新服务器s7
维斯易连打印服务器固件
三年级网络安全班会记录
nvidia 服务器
数据库创建表空间的参数
青岛学软件开发的技校
python网络安全模式
软件开发类监理
沈阳方林装修软件开发
云服务器aws 日本