千家信息网

hadoop如何实现x计数器、分区、序列化

发表于:2025-12-02 作者:千家信息网编辑
千家信息网最后更新 2025年12月02日,小编给大家分享一下hadoop如何实现x计数器、分区、序列化,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!package
千家信息网最后更新 2025年12月02日hadoop如何实现x计数器、分区、序列化

小编给大家分享一下hadoop如何实现x计数器、分区、序列化,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

package com.test;import java.io.DataInput;import java.io.DataOutput;import java.io.IOException;import java.util.Iterator;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.Writable;import org.apache.hadoop.mapred.Counters.Counter;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Partitioner;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;import org.apache.hadoop.util.Tool;import org.apache.hadoop.util.ToolRunner;/* * 手机号码  流量[类型1、类型2、类型3] * 13500001234 12,56,78 * 18600001235 32,21,80 * 15800001235 16,33,56 * 13500001234 19,92,73 * 18600001235 53,55,29 * 18600001239 27,77,68 *  * 计算得出 * 手机号 类型1汇总 类型2汇总 类型3汇总 */public class WordCount extends Configured implements Tool {  public static class Map extends Mapper {  //避免每调用一次map就创建一次对象  private final Text phoneNum = new Text();  private final StreamWritable streamWritable = new StreamWritable();    private String firstLine = "#_#";  private String lastLine;    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {   String line = value.toString();      //获得map输入的第一条记录   if("#_#".equals(firstLine)) {    firstLine = key.toString() + "\t" + line;   }      //获得map输入的最后一条记录   lastLine = key.toString() + "\t" + line;      //13500001234手机号码总共在多少行出现【自定义计数器】   Counter helloCounter = (Counter) context.getCounter("Words", "13500001234");   if(line.contains("13500001234")) {    helloCounter.increment(1L);   }      String[] strs = line.split("\t");   //手机号码   phoneNum.set(strs[0]);      //流量   String[] stream = strs[1].split(",");   streamWritable.set(Long.parseLong(stream[0]), Long.parseLong(stream[1]), Long.parseLong(stream[2]));      context.write(phoneNum, streamWritable);  }    protected void cleanup(org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException ,InterruptedException {   //获得map输入的第一条记录   System.out.println(firstLine);      //获得map输出的最后一条记录   System.out.println(lastLine);  }; }  public static class Reduce extends Reducer {  //避免每调用一次reduce就创建一次对象  private StreamWritable streamWritable = new StreamWritable();    /*   * map函数执行结束后,map输出的一共有4个,分别是,,   * 分区,默认只有一个分区  job.setPartitionerClass   * 排序 ,,   * 分组 把相同key的value放到一个集合中 ,每一组调用一次reduce函数   * 归约(可选) job.setCombinerClass   */  public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {   long stream1 = 0;   long stream2 = 0;   long stream3 = 0;      Iterator it = values.iterator();   while(it.hasNext()) {    streamWritable = it.next();    stream1 = stream1 + streamWritable.getStream1();    stream2 = stream2 + streamWritable.getStream2();    stream3 = stream3 + streamWritable.getStream3();   }      streamWritable.set(stream1, stream2, stream3);   context.write(key, streamWritable);  } }  public int run(String[] args) throws Exception {  Configuration conf = this.getConf();  Job job = new Job(conf);  job.setJarByClass(WordCount.class);  job.setJobName(WordCount.class.getSimpleName());    FileInputFormat.addInputPath(job, new Path(args[0]));  FileOutputFormat.setOutputPath(job, new Path(args[1]));    //如果没有配置,默认值是1  job.setNumReduceTasks(1);    //指定map产生的数据按照什么规则分配到不同的reduce中,如果没有配置,默认是HashPartitioner.class  job.setPartitionerClass(MyPartitioner.class);    //FileInputFormat.getSplits决定map任务数量,XxxInputFormat.RecordReader处理每一个split,得到map输入的key、value  //默认是TextInputFormat  job.setInputFormatClass(TextInputFormat.class);  job.setOutputFormatClass(TextOutputFormat.class);    job.setMapperClass(Map.class);  job.setCombinerClass(Reduce.class);  job.setReducerClass(Reduce.class);    //当reduce输出类型与map输出类型一致时,map的输出类型可以不设置  job.setMapOutputKeyClass(Text.class);  job.setMapOutputValueClass(StreamWritable.class);    //reduce的输出类型一定要设置  job.setOutputKeyClass(Text.class);  job.setOutputValueClass(StreamWritable.class);    job.waitForCompletion(true);    return job.isSuccessful()?0:1; }  public static void main(String[] args) throws Exception {  int exit = ToolRunner.run(new WordCount(), args);  System.exit(exit); } }//自定义Partitionerclass MyPartitioner extends Partitioner { @Override //返回值表示,分配到第几个reduce任务中 public int getPartition(Text key, StreamWritable value, int numPartitions) {  //13500001234手机号码分到第1个reduce,其余的分到第二个reduce  if("13500001234".equals(key.toString())) {   return 0;  } else {   return 1;  } }}//自定义序列化类[处理手机流量]//Serializable:Java序列化的信息非常臃肿,比如存在层层类继承的时候,继承关系序列化出去,还需要序列化回来。//hadoop的Writable轻量很多class StreamWritable implements Writable { private long stream1;  private long stream2;  private long stream3;  public long getStream1() {  return stream1; } public void setStream1(long stream1) {  this.stream1 = stream1; } public long getStream2() {  return stream2; } public void setStream2(long stream2) {  this.stream2 = stream2; } public long getStream3() {  return stream3; } public void setStream3(long stream3) {  this.stream3 = stream3; } public StreamWritable() {   }  public StreamWritable(long stream1, long stream2, long stream3) {  this.set(stream1, stream2, stream3); }  public void set(long stream1, long stream2, long stream3) {  this.stream1 = stream1;  this.stream2 = stream2;  this.stream3 = stream3; }  @Override public void write(DataOutput out) throws IOException {  out.writeLong(stream1);//写出顺序和读入顺序一一对应  out.writeLong(stream2);  out.writeLong(stream3); } @Override public void readFields(DataInput in) throws IOException {  this.stream1 = in.readLong();//写出顺序和读入顺序一一对应  this.stream2 = in.readLong();  this.stream3 = in.readLong(); }  //输出的时候会调用toString方法 @Override public String toString() {  return this.stream1+"\t"+this.stream2+"\t"+this.stream3; }}

以上是"hadoop如何实现x计数器、分区、序列化"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!

0