怎么使用C#完成常用神经网络
发表于:2025-12-03 作者:千家信息网编辑
千家信息网最后更新 2025年12月03日,这篇文章主要介绍"怎么使用C#完成常用神经网络",在日常操作中,相信很多人在怎么使用C#完成常用神经网络问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"怎么使用C#完成常
千家信息网最后更新 2025年12月03日怎么使用C#完成常用神经网络
这篇文章主要介绍"怎么使用C#完成常用神经网络",在日常操作中,相信很多人在怎么使用C#完成常用神经网络问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"怎么使用C#完成常用神经网络"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
WeaveNetC#编写的用于神经网络的计算图框架
这是一个由c#编写的神经网络,可以看到内部任何细节的实现,可以对学习神经网络,以及理解其中的计算方式。此架构不包含自动 Backward 向后传播,为了展示更多的计算细节。
源码包含 cnn,bp,fcn,lstm,convlstm,GRU 等示例内容,包含示例所用的数据内容。
LOSS支持:MESLOSS,cross-entropy
激活函数支持:ReLu,Tanh,Sigmod,Softmax
数据类型支持: float[][] 与 float[][][,],二维与四维
池化支持:平均池化Averpooling,最大池化Maxpooling
其他支持:ConvLayer,Conv2DLayer,MulLayer,ConvTranspose2DLayer
每个支持类都包含了向前传播Forward,与Backward向后传播的方法
以下几个小例子
CNN的训练实现
public class CNN { Conv2DLayer cl; Conv2DLayer cl2; Conv2DLayer cl3; //TanhLayer sl = new TanhLayer(); //TanhLayer sl2 = new TanhLayer(); //TanhLayer sl3 = new TanhLayer(); Maxpooling ap1; Maxpooling ap2; SigmodLayer sl = new SigmodLayer(); SigmodLayer sl2 = new SigmodLayer(); //SigmodLayer sl3 = new SigmodLayer(); Softmax sl3 = new Softmax(); //Averpooling ap2; //Averpooling ap1; public CNN() { cl = new Conv2DLayer(1, 0, 5, 1, 6); //ap1 = new Averpooling(2); ap1 = new Maxpooling(2); cl2 = new Conv2DLayer(1, 0, 5, 6, 12); // ap2 = new Averpooling(2); ap2 = new Maxpooling(2); cl3 = new Conv2DLayer(in_channels: 12, out_channels: 10, _inSize: 4,_full:true ); } public dynamic Forward(float[][][,] matrices) { dynamic data = cl.Forward(matrices); data = sl.Forward(data); data = ap1.Forward(data); data = cl2.Forward(data); data = sl2.Forward(data); data = ap2.Forward(data); data = cl3.Forward(data); data = sl3.Forward(data); return data; } dynamic cl3grid; dynamic cl2grid; dynamic clgrid; public void backward(dynamic grid) { dynamic grid2 = sl3.Backward(grid); cl3grid = cl3.backweight(grid2);//获取cl3的权重 //-------------------------------- grid2 = cl3.Backward(grid2); grid2 =ap2.Backward(grid2); grid2 = sl2.Backward(grid2); cl2grid = cl2.backweight(grid2);//获取cl2的权重 //------------------------------------- grid2 = cl2.Backward(grid2); grid2 = ap1.Backward(grid2); grid2 = sl.Backward(grid2); clgrid = cl.backweight(grid2);//获取cl的权重 } float lr = 1.0f; public void update() { // int channl = cl3grid.grid.Length; cl3.wdata = Matrix.MatrixSub(cl3.wdata, Matrix.multiply(cl3grid.grid, lr)); cl3.basicData = Matrix.MatrixSub(cl3.basicData, Matrix.multiply(cl3grid.basic, lr)); cl2.weights = Matrix.MatrixSub(cl2.weights, Matrix.multiply(cl2grid.grid, lr)); cl2.basicData = Matrix.MatrixSub(cl2.basicData, Matrix.multiply(cl2grid.basic, lr)); cl.weights = Matrix.MatrixSub(cl.weights, Matrix.multiply(clgrid.grid, lr)); cl.basicData = Matrix.MatrixSub(cl.basicData, Matrix.multiply(clgrid.basic, lr)); } }LSTM 实现例子
public class LSTMCELL { ConvLayer convLayerih; ConvLayer convLayerhh; int input_size; int hidden_size; public LSTMCELL(int _input_size, int _hidden_size) { input_size = _input_size; hidden_size = _hidden_size; convLayerih = new ConvLayer(input_size, hidden_size * 4 ); //convLayerih.weights = JsonConvert.DeserializeObject(util.getstr("D:\\lstmihw.json")); //convLayerih.basicData = JsonConvert.DeserializeObject(util.getstr("D:\\lstmihb.json")); convLayerhh = new ConvLayer( hidden_size, hidden_size * 4); //convLayerhh.weights = JsonConvert.DeserializeObject(util.getstr("D:\\lstmhhw.json")); //convLayerhh.basicData = JsonConvert.DeserializeObject(util.getstr("D:\\lstmhhb.json")); } SigmodLayer input_gate_s = new SigmodLayer(); SigmodLayer forget_gate_s = new SigmodLayer(); SigmodLayer output_gate_s = new SigmodLayer(); TanhLayer cell_memory_tl = new TanhLayer(); TanhLayer cell_tl = new TanhLayer(); MulLayer c_next_mul = new MulLayer(); MulLayer mulin_gate_mul = new MulLayer(); MulLayer h_next_mul = new MulLayer(); public dynamic Forward(float[][] input, float[][] h_prev, float[][] c_prev) { //a_vector = np.dot(x, self.weight_ih.T) + np.dot(h_prev, self.weight_hh.T) //a_vector += self.bias_ih + self.bias_hh Xinput = input; xh_prev = h_prev; xc_prev = c_prev; var ih = convLayerih.Forward(input); var hh = convLayerhh.Forward(h_prev); var a_vector = Matrix.MatrixAdd(ih, hh); List liast = Matrix.chunk(a_vector,4,1); var a_i = liast[0]; var a_f = liast[1]; var a_c = liast[2]; var a_o = liast[3]; input_gate = input_gate_s.Forward(a_i); forget_gate = forget_gate_s.Forward(a_f); cell_memory = cell_memory_tl.Forward(a_c); output_gate = output_gate_s.Forward(a_o); var c_next_temp = c_next_mul.Forward(forget_gate, c_prev); var mulin_gate = mulin_gate_mul.Forward(input_gate, cell_memory); var c_next = Matrix.MatrixAdd(c_next_temp, mulin_gate); var h_next = h_next_mul.Forward(output_gate, cell_tl.Forward(c_next)); // dh_prev = Matrix.zroe(h_next.Length, h_next[0].Length); return (h_next,c_next);//上次的状态,上次的记忆 } dynamic Xinput, xh_prev, xc_prev, input_gate, forget_gate, cell_memory, output_gate; // dynamic dh_prev; dynamic ihweight, hhweight; public dynamic backward(dynamic grid) { var dh = h_next_mul.BackwardY(grid); var d_tanh_c = cell_tl.Backward(dh); //var dc_prev=c_next_mul.backwardY(d_tanh_c); var d_input_gate = mulin_gate_mul.Backward(d_tanh_c); var d_forget_gate=c_next_mul.Backward(d_tanh_c); var d_cell_memory = mulin_gate_mul.BackwardY(d_tanh_c); var d_output_gate = h_next_mul.Backward(grid);// d_tanh_c var d_ai = input_gate_s.Backward(d_input_gate); var d_af = forget_gate_s.Backward(d_forget_gate); var d_ao = output_gate_s.Backward(d_output_gate); var d_ac = cell_memory_tl.Backward(d_cell_memory); var temp=Matrix.cat(d_ai, d_af, 1); var temp2 = Matrix.cat( d_ac, d_ao, 1); var da= Matrix.cat(temp, temp2, 1); // var daT=Matrix.T(da); ihweight = convLayerih.backweight(da); hhweight = convLayerhh.backweight(da); return convLayerih.backward(da); } float lr = 0.1f; public void update() { convLayerih.weights = Matrix.MatrixSub(convLayerih.weights, Matrix.multiply(ihweight.grid, lr)); convLayerih.basicData = Matrix.MatrixSub(convLayerih.basicData, Matrix.multiply(ihweight.basic, lr)); convLayerhh.weights = Matrix.MatrixSub(convLayerhh.weights, Matrix.multiply(hhweight.grid, lr)); convLayerhh.basicData = Matrix.MatrixSub(convLayerhh.basicData, Matrix.multiply(hhweight.basic, lr)); } } FCN实现例子
public class FCN { Conv2DLayer cl; Conv2DLayer cl2; Conv2DLayer cl3; ConvTranspose2DLayer Tcl1; Maxpooling mpl = new Maxpooling(); Maxpooling mpl2 = new Maxpooling(); SigmodLayer sl = new SigmodLayer(); SigmodLayer sl2 = new SigmodLayer(); SigmodLayer sl3 = new SigmodLayer(); Softmax sl4 = new Softmax(); public FCN(int weightssize) { cl = new Conv2DLayer(1, weightssize / 2, weightssize, 1, 6, bias: false); cl2 = new Conv2DLayer(1, weightssize / 2, weightssize, 6, 12, bias: false); cl3 = new Conv2DLayer(1, weightssize / 2, weightssize, 12, 24, bias: false); Tcl1 = new ConvTranspose2DLayer(2, 1, weightssize + 1, 24, 1, bias: false); } public dynamic Forward(dynamic data) { dynamic data2= cl.Forward(data); data2=sl.Forward(data2); data2=mpl.Forward(data2); data2 = cl2.Forward(data2); data2 = sl2.Forward(data2); data2 = mpl2.Forward(data2); data2 = cl3.Forward(data2); data2 = sl3.Forward(data2); data2=Tcl1.Forward(data2); data2 = sl4.Forward(data2); return data2; } public dynamic backward(dynamic grid) { var grid2 = sl4.Backward(grid); grid2= Tcl1.Backward(grid2); grid2 = sl3.Backward(grid2); grid2 = cl3.Backward(grid2); grid2 = mpl2.Backward(grid2); grid2 = sl2.Backward(grid2); grid2 = cl2.Backward(grid2); grid2 = mpl.Backward(grid2); grid2 = sl.Backward(grid2); grid2 = cl.Backward(grid2); return grid2; } }到此,关于"怎么使用C#完成常用神经网络"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!
神经
神经网络
网络
支持
学习
常用
C#
例子
更多
权重
传播
内容
数据
方法
示例
细节
帮助
实用
最大
接下来
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
计算机网络技术对我的帮助
数据库自动创建表格
向数据库批量导入数据
网络安全推荐目录
网络安全督查考核制度
上海信息软件开发一体化
对数据库安全要求包括下列
什么是桌面数据库
浙江聚荣网络技术有限公司
门头沟网络安全三级认证
广州奥格互联网科技有限公司官网
江西手机软件开发管理
张店仓库库存软件开发公司
服务器外形
linux服务器安装教程
网络安全蠕虫名词解释
在电脑上找不到服务器管理器
软件开发经理岗位职责怎么写
焦作天龙网络技术有限公司
电子第三十研究所 网络安全治理
软件开发部门制度
当代科技互联网
连接dbf数据库出错
大兴回收服务器价格
互联网科技公司 40岁
信创数据库技术
我的世界别人的服务器
武汉誉天互联网科技有限公司
计算机网络技术容易吗
如何查看曙光服务器的管理地址