千家信息网

怎么用Python开启机器学习

发表于:2025-11-07 作者:千家信息网编辑
千家信息网最后更新 2025年11月07日,本篇内容主要讲解"怎么用Python开启机器学习",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"怎么用Python开启机器学习"吧!随着行业内机器学习的崛起
千家信息网最后更新 2025年11月07日怎么用Python开启机器学习

本篇内容主要讲解"怎么用Python开启机器学习",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"怎么用Python开启机器学习"吧!

随着行业内机器学习的崛起,能够帮用户快速迭代整个过程的工具变得至关重要。Python,机器学习技术领域冉冉升起的一颗新星,带你走向成功实现人生价值。因此,用 Python 实现机器学习是非常有必要的。

用 Python 实现机器学习的介绍

很多伙伴可能想不出为什么是 Python 而不是其他的语言?根据我的经验,Python 是最容易学习的编程语言之一。现在需要快速迭代整个过程,与此同时,数据科学家不需要深入了解这种语言,因为他们可以快速掌握它。

有多容易呢?

for anything in the_list:    print(anything)

是不是想英语一样,哈哈。Python 的语法和英语(或人类语言,而不是机器语言)语法关系密切。在 Python 的语法中没有愚蠢的大括号造成的困扰。我有一个从事质量保证(Quality Assurance)工作的同事,虽然不是软件工程师,但她可以在一天内写出产品级的 Python 代码。(是真的!)

我将在下文中介绍几个基于 Python 的库。作为数据分析师和数据科学家,我们可以利用他们的杰作来帮助我们完成任务。这些不可思议的库是用 Python 实现机器学习的必备工具。

NumPy

这是一个非常有名的数据分析库。从计算数据分布的中位数,到处理多维数组,NumPy 都可以帮你完成。

Pandas

这是用来处理 CSV 文件的。当然了,你还需要处理一些表格、查看统计数据等,那 Pandas 就是可以满足你的需求的工具。

Matplotlib

把数据存储在 Pandas 的数据框后,你可能需要做一些可视化来理解数据的更多信息。毕竟一图抵千言。

Seaborn

这是另一个可视化工具,但这个工具更侧重于统计结果的可视化,比如直方图、饼图、曲线图或相关性表等。

Scikit-Learn

这是用 Python 实现机器学习的终极工具。所谓用 Python 实现机器学习指的就是这个--Scikit-Learn。所有你需要的从算法到提升的内容都能在这里找到。

Tensorflow 和 Pytorch

针对这两个工具我不会说太多。但如果你对深度学习感兴趣的话,可以详细了解一下,它们值得你花时间去学习。(我下次会再写一篇关于深度学习的教程,敬请期待!)

Python 机器学习项目

示例项目:

泰坦尼克:从灾难中进行机器学习(https://www.)

就是众所周知的泰坦尼克号。这是一场发生在 1912 年的灾难,这场灾难波及到的乘客和机组成员共 2224 人,其中 1502 人遇难死亡。这项 Kaggle 竞赛(或者说是教程)提供了灾难中的真实数据。你的任务是解释这些数据,并预测出灾难中哪些人会活下来,哪些人不会。

用 Python 实现机器学习的教程

在深入了解泰坦尼克号的数据之前,我们要先安装一些必需的工具。

首先当然是 Python。第一次安装 Python 需要从官网上安装。你要安装 3.6 以上的版本,这样才能跟最新版本的库保持同步。

Python 官方网站:https://www.

然后可以用 Python 的 pip 安装所有的库。你刚刚下载的 Python 发行版会自动安装 pip。

需要的其他工具都可以用 pip 安装。打开终端、命令行或 PowerShell,命令如下:

pip install numpypip install pandaspip install matplotlibpip install seabornpip install scikit-learnpip install jupyter

看起来一切都运行良好。但是等一下,什么叫 jupyter?jupyter 表示 Julia、Python 和 R,因此它实际上是 Jupytr。但这个单词看起来太奇怪了,所以他们把它变成了 Jupyter。这是一个很有名的笔记本,你可以在这个笔记本上写交互式的 Python 代码。

只要在终端中输入 jupyter notebook,就可以打开浏览器页面

你可以把代码写在绿色矩形中,而且可以交互式地编写并评价 Python 代码。

现在你已经安装了所有的工具。我们开始吧!

数据探索

探索数据是第一步。你需要从 Kaggle 的 Titanic 页面下载数据,然后将下载的数据放到你启动 Jupyter 笔记本的文件夹中。

数据下载地址:https://www.ta

然后导入必要的库:

import numpy as np import pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport warningswarnings.filterwarnings('ignore')%matplotlib inline

载入数据:

train_df=pd.read_csv("train.csv")train_df.head()

这就是我们的数据。它有下面几列:

  • PassengerId,乘客的标识符;

  • Survived,他(她)是否存活了下来;

  • Pclass,舱室类别,也许 1 表示经济舱,2 表示商务舱,3 表示头等舱;

  • Name,乘客的名字;

  • Sex,性别;

  • Age,年龄;

  • SibSp,即兄弟姐妹(siblings)或配偶(spouses),表示在船上的兄弟姐妹以及配偶的数目;

  • Parch,即父母(Parents)或子女(Children),表示在船上的父母和子女的数目;

  • Ticket,船票详情;

  • Cabin,舱号,NaN 表示未知;

  • Embarked,登船的起始地,S 表示南安普顿(Southampton),Q 表示皇后镇(Queenstown),C 表示瑟堡(Cherbourg)

在探索数据时,常常会遇到数据缺失的问题。我们来看一下

def missingdata(data):    total = data.isnull().sum().sort_values(ascending = False)    percent = (data.isnull().sum()/data.isnull().count()*100).sort_values(ascending = False)    ms=pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])    ms= ms[ms["Percent"] > 0]    f,ax =plt.subplots(figsize=(8,6))    plt.xticks(rotation='90')    fig=sns.barplot(ms.index, ms["Percent"],color="green",alpha=0.8)    plt.xlabel('Features', fontsize=15)    plt.ylabel('Percent of missing values', fontsize=15)    plt.title('Percent missing data by feature', fontsize=15)    return msmissingdata(train_df)

舱号、年龄以及登船地的数据都有一些缺失值,而舱号信息有大量的缺失。我们需要对它们进行处理,也就是所谓的数据清理(Data Cleaning)。

数据清理

我们 90% 的时间都花在这上面。我们要针对每一个机器学习项目进行大量的数据清理。当数据清理干净时,我们就可以轻松地进行下一步了,什么都不用担心。

数据清理中最常用的技术是填充缺失数据。你可以用众数、平均数或中位数来填充缺失数据。选择这些数据没有绝对规则,你可以一一尝试,然后看看它们的表现如何。但是根据经验来讲,分类数据只能用众数,连续数据可以用中位数或平均数。所以我们用众数来填充登船地数据,用中位数来填充年龄数据。

train_df['Embarked'].fillna(train_df['Embarked'].mode()[0], inplace = True)train_df['Age'].fillna(train_df['Age'].median(), inplace = True)

接下来的重要操作是删除数据,尤其针对大量缺失的数据。我们针对舱号数据进行以下处理:

drop_column = ['Cabin']train_df.drop(drop_column, axis=1, inplace = True)

现在检查一下清理过的数据。

print('check the nan value in train data')print(train_df.isnull().sum())

特征工程

现在数据已经清理干净了。接下来我们要进行特征工程。

特征工程基本上就是根据当前可用数据发现特征或数据的技术。有几种方法可以实现这种技术。在很多时候这都是常识。

我们以登船地数据为例--这是用 Q、S 或 C 填充的数据。Python 库不能处理这个,因为它只能处理数字。所以你需要用所谓的独热向量化(One Hot Vectorization)来处理,它可以把一列变成三列。用 0 或 1 填充 Embarked_Q、Embarked_S 和 Embarked_C,来表示这个人是不是从这个港口出发的。

再以 SibSp 和 Parch 为例。这两列没有什么有趣的,但是你可能会想知道某个乘客有多少家人登上了这艘船。如果家人多的话可能会增加生存几率,因为他们可以互相帮助。从另一个角度说,单独登船的乘客可能很难生存下去。

因此你可以创建新的一列,这一列是成员数量(family size),family size = SibSp + Parch + 1(乘客自己)。

最后一个例子是以 bin 列为例的。由于你认为很难区分具有相似值的事物,所以这种操作创建了值范围(ranges of values),然后将多个值组合在一起。比如,5 岁和 6 岁的乘客之间有显著的差异吗?或者 45 和 46 岁的人之间有显著的差异吗?

这就是创建 bin 列的原因。也许就年龄而言,我们可以创建 4 列--幼儿(0~14 岁)、青少年(14~20 岁)、成年人(20~40 岁)以及年长的人(40 岁以上)。

编码如下:

all_data = train_dffor dataset in all_data :    dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1import re# Define function to extract titles from passenger namesdef get_title(name):    title_search = re.search(' ([A-Za-z]+)\.', name)    # If the title exists, extract and return it.    if title_search:        return title_search.group(1)    return ""# Create a new feature Title, containing the titles of passenger namesfor dataset in all_data:    dataset['Title'] = dataset['Name'].apply(get_title)# Group all non-common titles into one single grouping "Rare"for dataset in all_data:    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don',                                                  'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')for dataset in all_data:    dataset['Age_bin'] = pd.cut(dataset['Age'], bins=[0,14,20,40,120], labels=['Children','Teenage','Adult','Elder'])for dataset in all_data:    dataset['Fare_bin'] = pd.cut(dataset['Fare'], bins=[0,7.91,14.45,31,120], labels ['Low_fare','median_fare', 'Average_fare','high_fare'])traindf=train_dffor dataset in traindf:    drop_column = ['Age','Fare','Name','Ticket']    dataset.drop(drop_column, axis=1, inplace = True)drop_column = ['PassengerId']traindf.drop(drop_column, axis=1, inplace = True)traindf = pd.get_dummies(traindf, columns = ["Sex","Title","Age_bin","Embarked","Fare_bin"],                             prefix=["Sex","Title","Age_type","Em_type","Fare_type"])

现在,你已经创建完成所有的特征了。接着我们看看这些特征之间的相关性:

sns.heatmap(traindf.corr(),annot=True,cmap='RdYlGn',linewidths=0.2) #data.corr()-->correlation matrixfig=plt.gcf()fig.set_size_inches(20,12)plt.show()

相关值接近 1 意味着高度正相关,-1 意味着高度负相关。例如,性别为男和性别为女之间就呈负相关,因为必须将乘客识别为一种性别(或另一种)。此外,你还可以看到,除了用特征工程创建的内容外,没有哪两种是高度相关的。这证明我们做得对。

如果某些因素之间高度相关会怎么样?我们可以删除其中的一个,新列中的信息并不能给系统提供任何新信息,因为这两者是完全一样的。

用 Python 实现机器学习

现在我们已经到达本教程的高潮--机器学习建模。

from sklearn.model_selection import train_test_split #for split the datafrom sklearn.metrics import accuracy_score  #for accuracy_scorefrom sklearn.model_selection import KFold #for K-fold cross validationfrom sklearn.model_selection import cross_val_score #score evaluationfrom sklearn.model_selection import cross_val_predict #predictionfrom sklearn.metrics import confusion_matrix #for confusion matrixall_features = traindf.drop("Survived",axis=1)Targeted_feature = traindf["Survived"]X_train,X_test,y_train,y_test = train_test_split(all_features,Targeted_feature,test_size=0.3,random_state=42)X_train.shape,X_test.shape,y_train.shape,y_test.shape

Scikit-Learn 库中有多种算法供你选择:

  • 逻辑回归

  • 随机森林

  • 支持向量机

  • K 最近邻

  • 朴素贝叶斯

  • 决策树

  • AdaBoost

  • LDA

  • 梯度增强

你可能感到不知所措,想弄清什么是什么。别担心,只要将它当做「黑箱」对待就好--选一个表现最好的。(我之后会写一篇完整的文章讨论如何选择这些算法。)

以我最喜欢的随机森林算法为例:

from sklearn.ensemble import RandomForestClassifiermodel = RandomForestClassifier(criterion='gini', n_estimators=700,                             min_samples_split=10,min_samples_leaf=1,                             max_features='auto',oob_score=True,                             random_state=1,n_jobs=-1)model.fit(X_train,y_train)prediction_rm=model.predict(X_test)print('--------------The Accuracy of the model----------------------------')print('The accuracy of the Random Forest Classifier is', round(accuracy_score(prediction_rm,y_test)*100,2))kfold = KFold(n_splits=10, random_state=22) # k=10, split the data into 10 equal partsresult_rm=cross_val_score(model,all_features,Targeted_feature,cv=10,scoring='accuracy')print('The cross validated score for Random Forest Classifier is:',round(result_rm.mean()*100,2))y_pred = cross_val_predict(model,all_features,Targeted_feature,cv=10)sns.heatmap(confusion_matrix(Targeted_feature,y_pred),annot=True,fmt='3.0f',cmap="summer")plt.title('Confusion_matrix', y=1.05, size=15)

哇哦!准确率高达 83%。就第一次尝试而言,这个结果已经很好了。

交叉验证分数的意思是 K 折验证方法。如果 K=10,就是说要把数据分成 10 个变量,计算所有分数的均值,并将它们作为最终分数。

微调

现在你已经完成了用 Python 实现机器学习的步骤。但再加一个步骤可以让你得到更好的结果--微调。微调的意思是为机器学习算法找到最佳参数。以上面的随机森林代码为例:

model = RandomForestClassifier(criterion='gini', n_estimators=700,                             min_samples_split=10,min_samples_leaf=1,                             max_features='auto',oob_score=True,                             random_state=1,n_jobs=-1)

你需要设置许多参数。顺便说一下,上面的都是默认值。你可以根据需要改变参数。但当然了,这需要花费很多时间。

别担心--有一种叫做网格搜索(Grid Search)的工具,它可以自动找出最佳参数。听起来还不错,对吧?

# Random Forest Classifier Parameters tunning model = RandomForestClassifier()n_estim=range(100,1000,100)## Search grid for optimal parametersparam_grid = {"n_estimators" :n_estim}model_rf = GridSearchCV(model,param_grid = param_grid, cv=5, scoring="accuracy", n_jobs= 4, verbose = 1)model_rf.fit(train_X,train_Y)# Best scoreprint(model_rf.best_score_)#best estimatormodel_rf.best_estimator_

到此,相信大家对"怎么用Python开启机器学习"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

数据 学习 机器 工具 乘客 处理 就是 特征 这是 缺失 之间 代码 工程 灾难 算法 语言 中位数 信息 内容 参数 数据库的安全要保护哪些东西 数据库安全各自的含义是什么 生产安全数据库录入 数据库的安全性及管理 数据库安全策略包含哪些 海淀数据库安全审计系统 建立农村房屋安全信息数据库 易用的数据库客户端支持安全管理 连接数据库失败ssl安全错误 数据库的锁怎样保障安全 中标麒麟安全邮件服务器 js打印20条数据库 数据库原理中选择率怎么算 白云软件开发专业哪家强 服务器更新后无法登录 求代理服务器地址 怎么下载网络安全学院 数据库变大查询 网络安全手抄报一年级标语 网络安全的手抄报(字清楚) 利用数据库查找文件 论坛服务器软件开发厂家 我国破获的网络安全大案 天津提供ipfs服务器云空间 sql数据库重命名怎么解决 网络安全文明上网知识 上海综合服务管理软件开发 网络安全技术风险评估管理 停止数据库引擎服务 北京定制安卓软件开发 服务器主板读取不到 达梦数据库查询数据库名称 阿里云服务器最便宜 金稻科技互联网产业 公民的网络安全义务与责任 更换网络摄像头需要重启服务器吗 关于计算机网络技术的认识和发展 网络技术大牛是谁 国外软件需要使用国外的服务器吗 聊天软件开发到底哪家好
0