千家信息网

SparkStreaming如何解决小文件问题

发表于:2025-12-01 作者:千家信息网编辑
千家信息网最后更新 2025年12月01日,这期内容当中小编将会给大家带来有关SparkStreaming如何解决小文件问题,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。使用sparkstreaming时,如
千家信息网最后更新 2025年12月01日SparkStreaming如何解决小文件问题

这期内容当中小编将会给大家带来有关SparkStreaming如何解决小文件问题,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

使用sparkstreaming时,如果实时计算结果要写入到HDFS,那么不可避免的会遇到一个问题,那就是在默认情况下会产生非常多的小文件,这是由sparkstreaming的微批处理模式和DStream(RDD)的分布式(partition)特性导致的,sparkstreaming为每个partition启动一个独立的线程来处理数据,一旦文件输出到HDFS,那么这个文件流就关闭了,再来一个batch的parttition任务,就再使用一个新的文件流,那么假设,一个batch为10s,每个输出的DStream有32个partition,那么一个小时产生的文件数将会达到(3600/10)*32=11520个之多。众多小文件带来的结果是有大量的文件元信息,比如文件的location、文件大小、block number等需要NameNode来维护,NameNode会因此鸭梨山大。不管是什么格式的文件,parquet、text,、JSON或者 Avro,都会遇到这种小文件问题,这里讨论几种处理Sparkstreaming小文件的典型方法。

增加batch大小

这种方法很容易理解,batch越大,从外部接收的event就越多,内存积累的数据也就越多,那么输出的文件数也就回变少,比如上边的时间从10s增加为100s,那么一个小时的文件数量就会减少到1152个。但别高兴太早,实时业务能等那么久吗,本来人家10s看到结果更新一次,现在要等快两分钟,是人都会骂娘。所以这种方法适用的场景是消息实时到达,但不想挤压在一起处理,因为挤压在一起处理的话,批处理任务在干等,这时就可以采用这种方法(是不是很像spark内部的pipeline模式,但是要注意区别哦)。

Coalesce大法好?

文章开头讲了,小文件的基数是:batch_number*partition_number,而第一种方法是减少batch_number,那么这种方法就是减少partition_number了,这个api不细说,就是减少初始的分区个数。看过spark源码的童鞋都知道,对于窄依赖,一个子RDD的partition规则继承父RDD,对于宽依赖(就是那些个叉叉叉ByKey操作),如果没有特殊指定分区个数,也继承自父rdd。那么初始的SourceDstream是几个partiion,最终的输出就是几个partition。所以Coalesce大法的好处就是,可以在最终要输出的时候,来减少一把partition个数。但是这个方法的缺点也很明显,本来是32个线程在写256M数据,现在可能变成了4个线程在写256M数据,而没有写完成这256M数据,这个batch是不算做结束的。那么一个batch的处理时延必定增长,batch挤压会逐渐增大。这种方法也要慎用,切鸡切鸡啊!

SparkStreaming外部来处理

我们既然把数据输出到hdfs,那么说明肯定是要用hive或者sparksql这样的"sql on hadoop"系统类进一步进行数据分析,而这些表一般都是按照半小时或者一小时、一天,这样来分区的(注意不要和sparkStreaming的分区混淆,这里的分区,是用来做分区裁剪优化的),那么我们可以考虑在SparkStreaming外再启动定时的批处理任务来合并SparkStreaming产生的小文件。这种方法不是很直接,但是却比较有用,"性价比"较高,唯一要注意的是,批处理的合并任务在时间切割上要把握好,搞不好就可能回去合并一个还在写入的SparkStreaming小文件。

自己调用foreach去append

SparkStreaming提供的foreach这个outout类api,可以让我们自定义输出计算结果的方法。那么我们其实也可以利用这个特性,那就是每个batch在要写文件时,并不是去生成一个新的文件流,而是把之前的文件打开。考虑这种方法的可行性,首先,HDFS上的文件不支持修改,但是很多都支持追加,那么每个batch的每个partition就对应一个输出文件,每次都去追加这个partition对应的输出文件,这样也可以实现减少文件数量的目的。这种方法要注意的就是不能无限制的追加,当判断一个文件已经达到某一个阈值时,就要产生一个新的文件进行追加了。

上述就是小编为大家分享的SparkStreaming如何解决小文件问题了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注行业资讯频道。

文件 方法 就是 输出 数据 处理 问题 任务 小时 结果 个数 实时 线程 分析 挤压 件数 内容 大小 大法 数量 数据库的安全要保护哪些东西 数据库安全各自的含义是什么 生产安全数据库录入 数据库的安全性及管理 数据库安全策略包含哪些 海淀数据库安全审计系统 建立农村房屋安全信息数据库 易用的数据库客户端支持安全管理 连接数据库失败ssl安全错误 数据库的锁怎样保障安全 伍佰万互联网科技靠谱吗 吉林时代网络技术工程 深圳橙大业网络技术公司 怎么辨别存储服务器 菏泽网络安全公司 华为服务器阵列磁盘分区 查看服务器网卡驱动是否正常 信息与网络技术教程 ncbi四个数据库 互联网公司域名服务器 邀请公安网络安全部门授课 宁波 网络安全 可口的披萨正在从服务器登出 软件开发过程中 测试可分为 北京瓦力网络技术有限公司 如何提高软件开发人员工作效率 新疆百品汇互联网科技有限公司 网络安全主题免费ppt 四川管理系统软件开发外包 陕西网络安全职业技能大赛 最残酷的网络技术 淄博党性体检软件开发公司 网络技术交流会开场白 我的世界租一个服务器多少钱 我的世界如何取消秋月之光服务器 数据库长度设置为4的倍数 网络安全入门的书 网络安全知识测试题及答题 有哪几种数据库的技术 贵州服务器托管云空间
0