numpy random模块有哪些
发表于:2025-12-02 作者:千家信息网编辑
千家信息网最后更新 2025年12月02日,这篇文章主要为大家展示了" numpy random模块有哪些",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下" numpy random模块有哪些"这篇文章
千家信息网最后更新 2025年12月02日numpy random模块有哪些
这篇文章主要为大家展示了" numpy random模块有哪些",内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下" numpy random模块有哪些"这篇文章吧。
一下方法都要加np.random.前缀
1.简单随机数据
| name | describe |
|---|---|
| rand(d0, d1, …, dn) | Random values in a given shape. |
| randn(d0, d1, …, dn) | Return a sample (or samples) from the "standard normal" distribution. |
| randint(low[, high, size, dtype]) | Return random integers from low (inclusive) to high (exclusive). |
| random_integers(low[, high, size]) | Random integers of type np.int between low and high, inclusive. |
| random_sample([size]) | Return random floats in the half-open interval [0.0, 1.0). |
| random([size]) | Return random floats in the half-open interval [0.0, 1.0). |
| ranf([size]) | Return random floats in the half-open interval [0.0, 1.0). |
| sample([size]) | Return random floats in the half-open interval [0.0, 1.0). |
| choice(a[, size, replace, p]) | Generates a random sample from a given 1-D array |
| bytes(length) | Return random bytes. |
2.生成随机分布
| name | describe |
|---|---|
| beta(a, b[, size]) | Draw samples from a Beta distribution. |
| binomial(n, p[, size]) | Draw samples from a binomial distribution. |
| chisquare(df[, size]) | Draw samples from a chi-square distribution. |
| dirichlet(alpha[, size]) | Draw samples from the Dirichlet distribution. |
| exponential([scale, size]) | Draw samples from an exponential distribution. |
| f(dfnum, dfden[, size]) | Draw samples from an F distribution. |
| gamma(shape[, scale, size]) | Draw samples from a Gamma distribution. |
| geometric(p[, size]) | Draw samples from the geometric distribution. |
| gumbel([loc, scale, size]) | Draw samples from a Gumbel distribution. |
| hypergeometric(ngood, nbad, nsample[, size]) | Draw samples from a Hypergeometric distribution. |
| laplace([loc, scale, size]) | Draw samples from the Laplace or double exponential distribution with specified logistic([loc, scale, size]) Draw samples from a logistic distribution. |
| lognormal([mean, sigma, size]) | Draw samples from a log-normal distribution. |
| logseries(p[, size]) | Draw samples from a logarithmic series distribution. |
| multinomial(n, pvals[, size]) | Draw samples from a multinomial distribution. |
| multivariate_normal(mean, cov[, size]) | Draw random samples from a multivariate normal distribution. |
| negative_binomial(n, p[, size]) | Draw samples from a negative binomial distribution. |
| noncentral_chisquare(df, nonc[, size]) | Draw samples from a noncentral chi-square distribution. |
| noncentral_f(dfnum, dfden, nonc[, size]) | Draw samples from the noncentral F distribution. |
| normal([loc, scale, size]) | Draw random samples from a normal (Gaussian) distribution. |
| pareto(a[, size]) | Draw samples from a Pareto II or Lomax distribution with specified shape. |
| poisson([lam, size]) | Draw samples from a Poisson distribution. |
| power(a[, size]) | Draws samples in [0, 1] from a power distribution with positive exponent a - 1. |
| rayleigh([scale, size]) | Draw samples from a Rayleigh distribution. |
| standard_cauchy([size]) | Draw samples from a standard Cauchy distribution with mode = 0. |
| standard_exponential([size]) | Draw samples from the standard exponential distribution. |
| standard_gamma(shape[, size]) | Draw samples from a standard Gamma distribution. |
| standard_normal([size]) | Draw samples from a standard Normal distribution (mean=0, stdev=1). |
| standard_t(df[, size]) | Draw samples from a standard Student's t distribution with df degrees of freedom. |
| triangular(left, mode, right[, size]) | Draw samples from the triangular distribution over the interval [left, right]. |
| uniform([low, high, size]) | Draw samples from a uniform distribution. |
| vonmises(mu, kappa[, size]) | Draw samples from a von Mises distribution. |
| wald(mean, scale[, size]) | Draw samples from a Wald, or inverse Gaussian, distribution. |
| weibull(a[, size]) | Draw samples from a Weibull distribution. |
| zipf(a[, size]) | Draw samples from a Zipf distribution. |
3.重排
| name | describe |
|---|---|
| shuffle(x) | Modify a sequence in-place by shuffling its contents. |
| permutation(x) | Randomly permute a sequence, or return a permuted range. |
以上是" numpy random模块有哪些"这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注行业资讯频道!
模块
内容
篇文章
学习
帮助
前缀
数据
方法
易懂
更多
条理
知识
编带
行业
资讯
资讯频道
频道
生成
研究
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
马来西亚服务器租金
计算机网络技术的英语怎么说
远程登陆服务器设置
服务器ip访问网站
什么是数据库长连
染色体数据库覆盖区域什么意思
服务器错误代码nginx
山东网络安全发展
天意网络安全专业
政务中心的服务器是干什么的
望城网信网络安全
数据库各表之间的计算
沧州廊坊hr系统网络技术
每次都显示无法连接到服务器
华为手机和云服务器
加加软件服务器管理员密码
bim数据库的好处
查询数据库中所有空表
字母的服务器
民政网络安全应急处置预案
爱如生数据库如何注册
白洋湖服务器有没有封
政务中心的服务器是干什么的
服务器 sas卡
消费金融软件开发协议
计算机二级数据库考察内容
有关网络安全的成语
油之源网络安全
服务器nfs安全方案
systems中心化数据库