详解Python人工智能混合高斯模型运动目标检测
发表于:2025-11-20 作者:千家信息网编辑
千家信息网最后更新 2025年11月20日,本篇内容主要讲解"详解Python人工智能混合高斯模型运动目标检测",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"详解Python人工智能混合高斯模型运动目
千家信息网最后更新 2025年11月20日详解Python人工智能混合高斯模型运动目标检测
本篇内容主要讲解"详解Python人工智能混合高斯模型运动目标检测",感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习"详解Python人工智能混合高斯模型运动目标检测"吧!
高斯算法提取工作
import cv2import numpy as np# 高斯算法class gaussian: def __init__(self): self.mean = np.zeros((1, 3)) self.covariance = 0 self.weight = 0; self.Next = None self.Previous = Noneclass Node: def __init__(self): self.pixel_s = None self.pixel_r = None self.no_of_components = 0 self.Next = Noneclass Node1: def __init__(self): self.gauss = None self.no_of_comp = 0 self.Next = Nonecovariance0 = 11.0def Create_gaussian(info1, info2, info3): ptr = gaussian() if (ptr is not None): ptr.mean[1, 1] = info1 ptr.mean[1, 2] = info2 ptr.mean[1, 3] = info3 ptr.covariance = covariance0 ptr.weight = 0.002 ptr.Next = None ptr.Previous = None return ptrdef Create_Node(info1, info2, info3): N_ptr = Node() if (N_ptr is not None): N_ptr.Next = None N_ptr.no_of_components = 1 N_ptr.pixel_s = N_ptr.pixel_r = Create_gaussian(info1, info2, info3) return N_ptrList_node = []def Insert_End_Node(n): List_node.append(n)List_gaussian = []def Insert_End_gaussian(n): List_gaussian.append(n)def Delete_gaussian(n): List_gaussian.remove(n);class Process: def __init__(self, alpha, firstFrame): self.alpha = alpha self.background = firstFrame def get_value(self, frame): self.background = frame * self.alpha + self.background * (1 - self.alpha) return cv2.absdiff(self.background.astype(np.uint8), frame)def denoise(frame): frame = cv2.medianBlur(frame, 5) frame = cv2.GaussianBlur(frame, (5, 5), 0) return framecapture = cv2.VideoCapture('1.mp4')ret, orig_frame = capture.read( )if ret is True: value1 = Process(0.1, denoise(orig_frame)) run = Trueelse: run = Falsewhile (run): ret, frame = capture.read() value = False; if ret is True: cv2.imshow('input', denoise(frame)) grayscale = value1.get_value(denoise(frame)) ret, mask = cv2.threshold(grayscale, 15, 255, cv2.THRESH_BINARY) cv2.imshow('mask', mask) key = cv2.waitKey(10) & 0xFF else: break if key == 27: break if value == True: orig_frame = cv2.resize(orig_frame, (340, 260), interpolation=cv2.INTER_CUBIC) orig_frame = cv2.cvtColor(orig_frame, cv2.COLOR_BGR2GRAY) orig_image_row = len(orig_frame) orig_image_col = orig_frame[0] bin_frame = np.zeros((orig_image_row, orig_image_col)) value = [] for i in range(0, orig_image_row): for j in range(0, orig_image_col): N_ptr = Create_Node(orig_frame[i][0], orig_frame[i][1], orig_frame[i][2]) if N_ptr is not None: N_ptr.pixel_s.weight = 1.0 Insert_End_Node(N_ptr) else: print("error") exit(0) nL = orig_image_row nC = orig_image_col dell = np.array((1, 3)); mal_dist = 0.0; temp_cov = 0.0; alpha = 0.002; cT = 0.05; cf = 0.1; cfbar = 1.0 - cf; alpha_bar = 1.0 - alpha; prune = -alpha * cT; cthr = 0.00001; var = 0.0 muG = 0.0; muR = 0.0; muB = 0.0; dR = 0.0; dB = 0.0; dG = 0.0; rval = 0.0; gval = 0.0; bval = 0.0; while (1): duration3 = 0.0; count = 0; count1 = 0; List_node1 = List_node; counter = 0; duration = cv2.getTickCount( ); for i in range(0, nL): r_ptr = orig_frame[i] b_ptr = bin_frame[i] for j in range(0, nC): sum = 0.0; sum1 = 0.0; close = False; background = 0; rval = r_ptr[0][0]; gval = r_ptr[0][0]; bval = r_ptr[0][0]; start = List_node1[counter].pixel_s; rear = List_node1[counter].pixel_r; ptr = start; temp_ptr = None; if (List_node1[counter].no_of_component > 4): Delete_gaussian(rear); List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1; for k in range(0, List_node1[counter].no_of_component): weight = List_node1[counter].weight; mult = alpha / weight; weight = weight * alpha_bar + prune; if (close == False): muR = ptr.mean[0]; muG = ptr.mean[1]; muB = ptr.mean[2]; dR = rval - muR; dG = gval - muG; dB = bval - muB; var = ptr.covariance; mal_dist = (dR * dR + dG * dG + dB * dB); if ((sum < cfbar) and (mal_dist < 16.0 * var * var)): background = 255; if (mal_dist < (9.0 * var * var)): weight = weight + alpha; if mult < 20.0 * alpha: mult = mult; else: mult = 20.0 * alpha; close = True; ptr.mean[0] = muR + mult * dR; ptr.mean[1] = muG + mult * dG; ptr.mean[2] = muB + mult * dB; temp_cov = var + mult * (mal_dist - var); if temp_cov < 5.0: ptr.covariance = 5.0 else: if (temp_cov > 20.0): ptr.covariance = 20.0 else: ptr.covariance = temp_cov; temp_ptr = ptr; if (weight < -prune): ptr = Delete_gaussian(ptr); weight = 0; List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1; else: sum += weight; ptr.weight = weight; ptr = ptr.Next; if (close == False): ptr = gaussian( ); ptr.weight = alpha; ptr.mean[0] = rval; ptr.mean[1] = gval; ptr.mean[2] = bval; ptr.covariance = covariance0; ptr.Next = None; ptr.Previous = None; Insert_End_gaussian(ptr); List_gaussian.append(ptr); temp_ptr = ptr; List_node1[counter].no_of_components = List_node1[counter].no_of_components + 1; ptr = start; while (ptr != None): ptr.weight = ptr.weight / sum; ptr = ptr.Next; while (temp_ptr != None and temp_ptr.Previous != None): if (temp_ptr.weight <= temp_ptr.Previous.weight): break; else: next = temp_ptr.Next; previous = temp_ptr.Previous; if (start == previous): start = temp_ptr; previous.Next = next; temp_ptr.Previous = previous.Previous; temp_ptr.Next = previous; if (previous.Previous != None): previous.Previous.Next = temp_ptr; if (next != None): next.Previous = previous; else: rear = previous; previous.Previous = temp_ptr; temp_ptr = temp_ptr.Previous; List_node1[counter].pixel_s = start; List_node1[counter].pixel_r = rear; counter = counter + 1;capture.release()cv2.destroyAllWindows()createBackgroundSubtractorMOG2
背景减法 (BS) 是一种常用且广泛使用的技术,用于通过使用静态相机生成前景蒙版(即,包含属于场景中运动物体的像素的二值图像)。
顾名思义,BS 计算前景蒙版,在当前帧和背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般地说,根据观察到的场景的特征,可以将所有内容视为背景。
背景建模包括两个主要步骤:
后台初始化;
背景更新。
在第一步中,计算背景的初始模型,而在第二步中,更新该模型以适应场景中可能的变化。
import cv2#构造VideoCapture对象cap = cv2.VideoCapture('1.mp4')# 创建一个背景分割器# createBackgroundSubtractorMOG2()函数里,可以指定detectShadows的值# detectShadows=True,表示检测阴影,反之不检测阴影。默认是truefgbg = cv2.createBackgroundSubtractorMOG2()while True : ret, frame = cap.read() # 读取视频 fgmask = fgbg.apply(frame) # 背景分割 cv2.imshow('frame', fgmask) # 显示分割结果 if cv2.waitKey(100) & 0xff == ord('q'): breakcap.release()cv2.destroyAllWindows()到此,相信大家对"详解Python人工智能混合高斯模型运动目标检测"有了更深的了解,不妨来实际操作一番吧!这里是网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
背景
模型
高斯
检测
场景
人工
人工智能
智能
目标
混合
运动
内容
减法
前景
算法
阴影
静态
学习
更新
实用
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
广元跑腿app软件开发
成都市公安局大运会网络安全
服务器性能需求分析
数据库表如何添加主键
旅顺民宿软件开发
战国修罗魂几个服务器
实现简单的界面与数据库的交互
etl工具怎么备份数据库
数据库关于排名的查询语句
mzcloud数据库免费
软件开发小公司不好待
全国网络安全竞赛总结
怎么使用数据库的jar包
光伏网络安全一区二区
数据库中生成表查询出生日期
网络安全公开课观后感1000
网络技术阿里云网络安全
我的世界服务器管理权限组
学软件开发去学大数据
网站服务器cpu过高
软件开发费税
爱我专业网络技术主题班会ppt
管家婆初始数据库用户名
网络安全法不履行三十二
数据库表只能有一个自增吗
NCBI数据库网络图
郑州大学软件开发分数线
圣安地列斯服务器管理员
女生高考报软件开发
迷你服务器系统