Hadoop运维记录系列(二十七)
发表于:2025-12-02 作者:千家信息网编辑
千家信息网最后更新 2025年12月02日,记录一个调试 pyspark2sql 访问 HDFS 透明加密的问题。访问源码如下,使用 pyspark2.1.3,基于 CDH 5.14.0 hive 1.1.0 + parquet,其中selec
千家信息网最后更新 2025年12月02日Hadoop运维记录系列(二十七)
记录一个调试 pyspark2sql 访问 HDFS 透明加密的问题。
访问源码如下,使用 pyspark2.1.3,基于 CDH 5.14.0 hive 1.1.0 + parquet,其中select的部分会访问 hdfs 加密区域。
from pyspark.sql import SQLContextfrom pyspark.sql import HiveContext, Rowfrom pyspark.sql.types import *import pandas as pdimport pyspark.sql.functions as F trial_pps_order = spark.read.parquet('/tmp/exia/trial_pps_select')pps_order = spark.read.parquet('/tmp/exia/orders_pps_wc_member')member_info = spark.read.parquet('/tmp/exia/member_info') # newHiveContext=HiveContext(sc) query_T=""" select * from crm.masterdata_hummingbird_product_mst_banner_v1 where brand_name = 'pampers' """product_mst=spark.sql(query_T) product_mst.show()在 zeppelin里运行后返回报错如下
Traceback (most recent call last): File "/tmp/zeppelin_pyspark-7483288776781667654.py", line 367, inraise Exception(traceback.format_exc())Exception: Traceback (most recent call last): File "/tmp/zeppelin_pyspark-7483288776781667654.py", line 360, in exec(code, _zcUserQueryNameSpace) File " ", line 14, in File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/pyspark/sql/dataframe.py", line 318, in show print(self._jdf.showString(n, 20)) File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__ answer, self.gateway_client, self.target_id, self.name) File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/pyspark/sql/utils.py", line 63, in deco return f(*a, **kw) File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value format(target_id, ".", name), value)Py4JJavaError: An error occurred while calling o76.showString.: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 6, pg-dmp-slave28.hadoop, executor 1): java.io.IOException: No KeyProvider is configured, cannot access an encrypted file at org.apache.hadoop.hdfs.DFSClient.decryptEncryptedDataEncryptionKey(DFSClient.java:1338) at org.apache.hadoop.hdfs.DFSClient.createWrappedInputStream(DFSClient.java:1414) at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:304) at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:298) at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81) at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSystem.java:298) at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:766) at org.apache.hadoop.mapred.LineRecordReader. (LineRecordReader.java:109) at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67) at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:257) at org.apache.spark.rdd.HadoopRDD$$anon$1. (HadoopRDD.scala:256) at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:216) at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:102) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:100) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:325) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1455) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1443) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1442) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1670) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1625) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1614) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1928) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1941) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1954) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2390) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2792) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2389) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2396) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2132) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2131) at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2822) at org.apache.spark.sql.Dataset.head(Dataset.scala:2131) at org.apache.spark.sql.Dataset.take(Dataset.scala:2346) at org.apache.spark.sql.Dataset.showString(Dataset.scala:248) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:238) at java.lang.Thread.run(Thread.java:748)Caused by: java.io.IOException: No KeyProvider is configured, cannot access an encrypted file at org.apache.hadoop.hdfs.DFSClient.decryptEncryptedDataEncryptionKey(DFSClient.java:1338) at org.apache.hadoop.hdfs.DFSClient.createWrappedInputStream(DFSClient.java:1414) at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:304) at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:298) at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81) at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSystem.java:298) at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:766) at org.apache.hadoop.mapred.LineRecordReader. (LineRecordReader.java:109) at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67) at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:257) at org.apache.spark.rdd.HadoopRDD$$anon$1. (HadoopRDD.scala:256) at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:216) at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:102) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:100) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:325) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ... 1 more
主要来说,日志里提示是没有提供访问加密区域的key,无法访问被加密的数据。
出现这个报错的主要原因是spark会优先使用其自身conf文件夹下的hive-site.xml配置项来访问hiveserver2服务,但是这个hive-site.xml文件里面没有配置访问加密区域所需要的配置。加上就OK了。
hadoop.security.key.provider.path kms://http@dmp-master2.hadoop:16000/kms dfs.encrypt.data.transfer.algorithm 3des dfs.encrypt.data.transfer.cipher.suites AES/CTR/NoPadding dfs.encrypt.data.transfer.cipher.key.bitlength 256 dfs.encryption.key.provider.uri kms://http@dmp-master2.hadoop:16000/kms
加密
区域
配置
文件
原因
数据
文件夹
日志
源码
部分
问题
提示
服务
运行
数据库的安全要保护哪些东西
数据库安全各自的含义是什么
生产安全数据库录入
数据库的安全性及管理
数据库安全策略包含哪些
海淀数据库安全审计系统
建立农村房屋安全信息数据库
易用的数据库客户端支持安全管理
连接数据库失败ssl安全错误
数据库的锁怎样保障安全
网络安全的危害翻译
iapp操作数据库
cs mar数据库怎么查数据
上海汉帮军民网络安全
手机网络安全等级设置
网络安全法草案2017
云服务器定义
云媒体服务器经销商
清华大学网络安全保研官网
sql如何copy表数据库
本地数据库怎么登陆
报关软件开发行业 风险
国家积极开发 网络技术研发
阿里云服务器 使用
mysql数据库技术支持
在那购买服务器
原神下错服务器怎么解决
分布式软件开发工具
达梦数据库梦
长宁区现代网络技术设置
mysql数据库自动归档系统
如何提高服务器安全性能
路由器虚拟服务器怎么使用
本地数据库怎么登陆
列国志数据库
服务器电源开关有问题
网络安全毕业月薪
运维对服务器管理考核
怎么退出数据库模式i
山大的网络安全专业