千家信息网

GoogleNet的Inception从v1到v4的演变是怎样的

发表于:2025-12-02 作者:千家信息网编辑
千家信息网最后更新 2025年12月02日,这期内容当中小编将会给大家带来有关GoogleNet的Inception从v1到v4的演变是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。"GoogleNet
千家信息网最后更新 2025年12月02日GoogleNet的Inception从v1到v4的演变是怎样的

这期内容当中小编将会给大家带来有关GoogleNet的Inception从v1到v4的演变是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

"GoogleNet和VGG是ImageNet挑战赛中的第一名和第二名。共同特点就是两个网络的层次都更深了。"

0 概述

GoogleNet和VGG是ImageNet挑战赛中的第一名和第二名。共同特点就是两个网络的层次都更深了。但是:

  • VGG继承了LeNet和AlexNet的一些框架结构
  • 而GoogleNet则做了更大胆的尝试,虽然深度有22层,但是参数却是Alexnet的1/12.而VGG都是Alexnet的三倍,由此可见,在内存和计算资源有限的时候,GoogleNet是好的结构,而且这个的性能更加优越,碾压VGG。


1 Inception v1

总之,Inception是GoogLeNet的核心,GoogLeNet优秀,一方面是运算速度快,而这就是Inception的功劳。设计一个稀疏网络结构,但是怎么产生稠密的数据呢。就用这个!CNN中常见的三种卷积核,和池化操作堆叠在一起,一方面增加了网络的宽度,另一方面也加强了网络对尺度的是影响。但是这个原始的版本思路是好的,但是计算量太大了,因此作者对3x3和5x5的卷积层之前用了1x1的缩小图片的channel数量,因此V1是这个样子:

【1x1的卷积核有什么用呢?】

1x1卷积的主要目的是为了减少维度,还用于修正线性激活(ReLU)。比如,上一层的输出为100x100x128,经过具有256个通道的5x5卷积层之后(stride=1,pad=2),输出数据为100x100x256,其中,卷积层的参数为128x5x5x256= 819200。而假如上一层输出先经过具有32个通道的1x1卷积层,再经过具有256个输出的5x5卷积层,那么输出数据仍为为100x100x256,但卷积参数量已经减少为128x1x1x32 + 32x5x5x256= 204800,大约减少了4倍。

【为什么会有池化层在其中呢?】

一般来说,想让图像缩小,有以下两种方式:但是左边的方法先池化层后inception,这样会导致特征的缺失,而右边的方法,会导致运算量很大。为了同时保持特征并且降低运算发,将网络改成下图,使用两个并行化的模块来降低计算量,也就是池化,卷积并行,然后再合并

2 inception V2

设计人员想,如果只是单纯的堆叠网络,虽然可以提高准确率,但是会导致计算效率的下降,如何在不增加过多额计算量的同时提高网络的表达能力呢?

【卷积分解(Fatorizing Convolutions)】

大尺寸的卷积核可以带来更大的感受野,但是也意味着更多的参数,比如size=5的卷积核有25个参数,size=3的有9个参数。GoogLeNet团队提出可以用2个连续的3x3的卷积核组成小网络来代替单个size=5的卷积层:通过大量的实验证明,这样的方案并不会导致表达的缺失。更进一步,团队考虑了nx1的卷积核,如下图:因此,任意的nxn的卷积都可以通过nx1后接上1xn来代替。但是团队发现在网络的前期使用这样分解的效果并不好,在中部使用效果才会好。

在这里插入图片描述

团队更新了网络中的Inception的结构,如下图:

figure5是原来的v1版本,然后figure6是改成两个3x3的版本,然后figure7是改成了1xn和nx1的版本。

3 inception v3

最重要的改进就是分解Factorization,把7x7分解成两个一维的卷积(1x7和7x1),3x3的也是一样,这样的好处是,既可以加速运算,又可以将一个卷积拆成两个卷积,这样使得网络的深度进一步加深,并且增加了网络的非线性。(每增加一层都要用ReLU),此时网络的输入也从224x224变成299x299。

4 Inception v4

研究了Inception模块与残差连接的结合,ResNet结构大大加深了网络的深度,而且极大的提高了训练速度。总之,Inception v4就是利用残差连接(Residual Connection)来改进v3,得到Inception-ResNet-v1, Inception-ResNet-v2, Inception-v4网络 我们先简单的看一下什么是残差结构:

结合起来就是:

然后通过二十个类似的模块,得到:


上述就是小编为大家分享的GoogleNet的Inception从v1到v4的演变是怎样的了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注行业资讯频道。

卷积 网络 就是 两个 参数 结构 输出 团队 版本 运算 数据 模块 残差 深度 更深 一方 内容 同时 图片 层次 数据库的安全要保护哪些东西 数据库安全各自的含义是什么 生产安全数据库录入 数据库的安全性及管理 数据库安全策略包含哪些 海淀数据库安全审计系统 建立农村房屋安全信息数据库 易用的数据库客户端支持安全管理 连接数据库失败ssl安全错误 数据库的锁怎样保障安全 软件开发公司有什么漏洞 数据库实现自动化 网络安全服务的上市公司 sql备份到另外一台服务器 网络安全管理制度图书馆 天津服务器防火墙 软件开发管理风险分析 杨浦区咨询软件开发销售方法 软件开发费用属于研发费用吗 自动投注挂机软件开发 php控制台读取数据库信息 武装突袭3卡服务器进入界面 设计logo免费软件开发 服务器配置高的单机游戏 网络安全可以做什么活动 腾讯服务器有多安全 嵌入式软件开发学会什么 手机应用软件开发哪家专业 互联网网络安全法案例 如何修改数据库的登录密码 关于网络技术与应用的论文 中国邮政集团软件开发面试 软件开发公司财务报表分析 泰州政务软件开发定制 access 创建数据库 茌平软件开发培训 和龙软件开发哪家有名 谁有计算机专升本数据库网课 江苏星骏网络技术有限公司 数据库关联查询语句特点
0