Netty服务端启动源码是什么
这篇文章主要介绍"Netty服务端启动源码是什么",在日常操作中,相信很多人在Netty服务端启动源码是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答"Netty服务端启动源码是什么"的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
一、从EchoServer示例入手
示例从哪里来?任何开源框架都会有自己的示例代码,Netty源码也不例外,如模块netty-example中就包括了最常见的EchoServer示例,下面通过这个示例进入服务端启动流程篇章。
public final class EchoServer { static final boolean SSL = System.getProperty("ssl") != null; static final int PORT = Integer.parseInt(System.getProperty("port", "8007")); public static void main(String[] args) throws Exception { // Configure SSL. final SslContext sslCtx; if (SSL) { SelfSignedCertificate ssc = new SelfSignedCertificate(); sslCtx = SslContextBuilder.forServer(ssc.certificate(), ssc.privateKey()).build(); } else { sslCtx = null; } // 1. 声明Main-Sub Reactor模式线程池:EventLoopGroup // Configure the server. EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(); // 创建 EchoServerHandler 对象 final EchoServerHandler serverHandler = new EchoServerHandler(); try { // 2. 声明服务端启动引导器,并设置相关属性 ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .option(ChannelOption.SO_BACKLOG, 100) .handler(new LoggingHandler(LogLevel.INFO)) .childHandler(new ChannelInitializer() { @Override public void initChannel(SocketChannel ch) throws Exception { ChannelPipeline p = ch.pipeline(); if (sslCtx != null) { p.addLast(sslCtx.newHandler(ch.alloc())); } //p.addLast(new LoggingHandler(LogLevel.INFO)); p.addLast(serverHandler); } }); // 3. 绑定端口即启动服务端,并同步等待 // Start the server. ChannelFuture f = b.bind(PORT).sync(); // 4. 监听服务端关闭,并阻塞等待 // Wait until the server socket is closed. f.channel().closeFuture().sync(); } finally { // 5. 优雅地关闭两个EventLoopGroup线程池 // Shut down all event loops to terminate all threads. bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } }} [代码行18、19]声明
Main-Sub Reactor模式线程池:EventLoopGroup
创建两个 EventLoopGroup 对象。其中,bossGroup用于服务端接受客户端的连接,workerGroup用于进行客户端的 SocketChannel 的数据读写。
(关于EventLoopGroup不是本文重点所以在后续文章中进行分析)
[代码行23-39]声明服务端启动引导器,并设置相关属性
AbstractBootstrap是一个帮助类,通过方法链(method chaining)的方式,提供了一个简单易用的方式来配置启动一个Channel。io.netty.bootstrap.ServerBootstrap ,实现 AbstractBootstrap 抽象类,用于 Server 的启动器实现类。io.netty.bootstrap.Bootstrap ,实现 AbstractBootstrap 抽象类,用于 Client 的启动器实现类。如下类图所示:

(在EchoServer示例代码中,我们看到 ServerBootstrap 的 group、channel、option、childHandler 等属性链式设置都放到关于AbstractBootstrap体系代码中详细介绍。)
[代码行43]绑定端口即启动服务端,并同步等待
先调用 #bind(int port) 方法,绑定端口,后调用 ChannelFuture#sync() 方法,阻塞等待成功。对于bind操作就是本文要详细介绍的"服务端启动流程"。
[代码行47]监听服务端关闭,并阻塞等待
先调用 #closeFuture() 方法,监听服务器关闭,后调用 ChannelFuture#sync() 方法,阻塞等待成功。 注意,此处不是关闭服务器,而是channel的监听关闭。
[代码行51、52]优雅地关闭两个
EventLoopGroup线程池
finally代码块中执行说明服务端将最终关闭,所以调用 EventLoopGroup#shutdownGracefully() 方法,分别关闭两个EventLoopGroup对象,终止所有线程。
二、服务启动过程
在服务启动过程的源码分析之前,这里回顾一下我们在通过JDK NIO编程在服务端启动初始的代码:
serverSocketChannel = ServerSocketChannel.open(); serverSocketChannel.configureBlocking(false); serverSocketChannel.socket().bind(new InetSocketAddress(port), 1024); selector = Selector.open(); serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
这5行代码标示一个最为熟悉的过程:
打开
serverSocketChannel配置非阻塞模式
为
channel的socket绑定监听端口创建
Selector将
serverSocketChannel注册到selector
后面等分析完Netty的启动过程后,会对这些步骤有一个新的认识。在EchoServer示例中,进入 #bind(int port) 方法,AbstractBootstrap#bind()其实有多个方法,方便不同地址参数的传递,实际调用的方法是AbstractBootstrap#doBind(final SocketAddress localAddress) 方法,代码如下:
private ChannelFuture doBind(final SocketAddress localAddress) { final ChannelFuture regFuture = initAndRegister(); final Channel channel = regFuture.channel(); if (regFuture.cause() != null) { return regFuture; } if (regFuture.isDone()) { // At this point we know that the registration was complete and successful. ChannelPromise promise = channel.newPromise(); doBind0(regFuture, channel, localAddress, promise); return promise; } else { // Registration future is almost always fulfilled already, but just in case it's not. final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel); regFuture.addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { Throwable cause = future.cause(); if (cause != null) { // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an // IllegalStateException once we try to access the EventLoop of the Channel. promise.setFailure(cause); } else { // Registration was successful, so set the correct executor to use. // See https://github.com/netty/netty/issues/2586 promise.registered(); doBind0(regFuture, channel, localAddress, promise); } } }); return promise; }}[代码行2] :调用
#initAndRegister()方法,初始化并注册一个Channel对象。因为注册是异步的过程,所以返回一个ChannelFuture对象。详细解析,见 「initAndRegister()」。[代码行4-6]]:若发生异常,直接进行返回。
[代码行9-34]:因为注册是异步的过程,有可能已完成,有可能未完成。所以实现代码分成了【第 10 至 14 行】和【第 15 至 36 行】分别处理已完成和未完成的情况。
核心在[第 11 、29行],调用
#doBind0(final ChannelFuture regFuture, final Channel channel, final SocketAddress localAddress, final ChannelPromise promise)方法,绑定 Channel 的端口,并注册 Channel 到SelectionKey中。如果异步注册对应的
ChanelFuture未完成,则调用ChannelFuture#addListener(ChannelFutureListener)方法,添加监听器,在注册完成后,进行回调执行#doBind0(...)方法的逻辑。
通过doBind方法可以知道服务端启动流程大致如下几个步骤:

1. 创建Channel

从#doBind(final SocketAddress localAddress)进入到initAndRegister():
final ChannelFuture initAndRegister() { Channel channel = null; try { channel = channelFactory.newChannel(); init(channel); } catch (Throwable t) { if (channel != null) { // channel can be null if newChannel crashed (eg SocketException("too many open files")) channel.unsafe().closeForcibly(); // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t); } // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t); } ChannelFuture regFuture = config().group().register(channel); if (regFuture.cause() != null) { if (channel.isRegistered()) { channel.close(); } else { channel.unsafe().closeForcibly(); } } return regFuture;}[代码行4]调用 ChannelFactory#newChannel() 方法,创建Channel对象。 ChannelFactory类继承如下:
可以在ChannelFactory注释看到@deprecated Use {@link io.netty.channel.ChannelFactory} instead.,这里只是包名的调整,对于继承结构不变。netty默认使用ReflectiveChannelFactory,我们可以看到重载方法:
@Overridepublic T newChannel() { try { return constructor.newInstance(); } catch (Throwable t) { throw new ChannelException("Unable to create Channel from class " + constructor.getDeclaringClass(), t); }}很明显,正如其名是通过反射机制构造Channel对象实例的。constructor是在其构造方法初始化的:this.constructor = clazz.getConstructor();这个clazz按理说应该是我们要创建的Channel的Class对象。那Class对象是什么呢?我们接着看channelFactory是怎么初始化的。
首先在AbstractBootstrap找到如下代码:
@Deprecatedpublic B channelFactory(ChannelFactory extends C> channelFactory) { ObjectUtil.checkNotNull(channelFactory, "channelFactory"); if (this.channelFactory != null) { throw new IllegalStateException("channelFactory set already"); } this.channelFactory = channelFactory; return self();}调用这个方法的递推向上看到:
public B channel(Class extends C> channelClass) { return channelFactory(new ReflectiveChannelFactory( ObjectUtil.checkNotNull(channelClass, "channelClass") ));} 这个方法正是在EchoServer中ServerBootstrap链式设置时调用.channel(NioServerSocketChannel.class)的方法。我们看到,channelClass就是NioServerSocketChannel.class,channelFactory也是以ReflectiveChannelFactory作为具体实例,并且将NioServerSocketChannel.class作为构造参数传递初始化的,所以这回答了反射机制构造的是io.netty.channel.socket.nio.NioServerSocketChannel对象。
继续看NioServerSocketChannel构造方法逻辑做了什么事情,看之前先给出NioServerSocketChannel类继承关系:
NioServerSocketChannel与NioSocketChannel分别对应服务端和客户端,公共父类都是AbstractNioChannel和AbstractChannel,下面介绍创建过程可以参照这个Channel类继承图。进入NioServerSocketChannel构造方法:
/** * Create a new instance */public NioServerSocketChannel() { this(newSocket(DEFAULT_SELECTOR_PROVIDER));}点击newSocket进去:
private static ServerSocketChannel newSocket(SelectorProvider provider) { try { /** * Use the {@link SelectorProvider} to open {@link SocketChannel} and so remove condition in * {@link SelectorProvider#provider()} which is called by each ServerSocketChannel.open() otherwise. * * See #2308. */ return provider.openServerSocketChannel(); } catch (IOException e) { throw new ChannelException( "Failed to open a server socket.", e); }}以上传进来的provider是DEFAULT_SELECTOR_PROVIDER即默认的java.nio.channels.spi.SelectorProvider,[代码行9]就是熟悉的jdk nio创建ServerSocketChannel。这样newSocket(DEFAULT_SELECTOR_PROVIDER)就返回了结果ServerSocketChannel,回到NioServerSocketChannel()#this()点进去:
/** * Create a new instance using the given {@link ServerSocketChannel}. */public NioServerSocketChannel(ServerSocketChannel channel) { super(null, channel, SelectionKey.OP_ACCEPT); config = new NioServerSocketChannelConfig(this, javaChannel().socket());}以上super代表父类AbstractNioMessageChannel构造方法,点进去看到:
/** * @see AbstractNioChannel#AbstractNioChannel(Channel, SelectableChannel, int) */protected AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent, ch, readInterestOp);}以上super代表父类AbstractNioChannel构造方法,点进去看到:
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent); this.ch = ch; this.readInterestOp = readInterestOp; try { ch.configureBlocking(false); } catch (IOException e) { try { ch.close(); } catch (IOException e2) { if (logger.isWarnEnabled()) { logger.warn("Failed to close a partially initialized socket.", e2); } } throw new ChannelException("Failed to enter non-blocking mode.", e); }}以上[代码行3]将ServerSocketChannel保存到了AbstractNioChannel#ch成员变量,在上面提到的NioServerSocketChannel构造方法的[代码行6]javaChannel()拿到的就是ch保存的ServerSocketChannel变量。
以上[代码行6]就是熟悉的jdk nio编程设置ServerSocketChannel非阻塞方式。这里还有super父类构造方法,点击进去看到:
protected AbstractChannel(Channel parent) { this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline();}以上构造方法中:
parent属性,代表父Channel对象。对于NioServerSocketChannel的parent为null。id属性,Channel编号对象。在构造方法中,通过调用#newId()方法进行创建。(这里不细展开Problem-1)unsafe属性,Unsafe对象。因为Channel真正的具体操作,是通过调用对应的Unsafe对象实施。所以需要在构造方法中,通过调用#newUnsafe()方法进行创建。这里的Unsafe并不是我们常说的jdk自带的sun.misc.Unsafe,而是io.netty.channel.Channel#Unsafe。(这里不细展开Problem-2)pipeline属性默认是DefaultChannelPipeline对象,赋值后在后面为channel绑定端口的时候会用到
通过以上创建channel源码过程分析,总结的流程时序图如下:
2. 初始化Channel
回到一开始创建Channel的initAndRegister()入口方法,在创建Channel后紧接着init(channel)进入初始化流程,因为是服务端初始化,所以是ServerBootstrap#init(Channel channel),代码如下:
@Overridevoid init(Channel channel) throws Exception { final Map, Object> options = options0(); synchronized (options) { setChannelOptions(channel, options, logger); } final Map, Object> attrs = attrs0(); synchronized (attrs) { for (Entry, Object> e: attrs.entrySet()) { @SuppressWarnings("unchecked") AttributeKey [代码 3 - 6 行]:
options0()方法返回的options保存了用户在EchoServer中设置自定义的可选项集合,这样ServerBootstrap将配置的选项集合,设置到了Channel的可选项集合中。[代码 8 - 15 行]:
attrs0()方法返回的attrs保存了用户在EchoServer中设置自定义的属性集合,这样ServerBootstrap将配置的属性集合,设置到了Channel的属性集合中。[代码21-28行]:通过局部变量
currentChildOptions和currentChildAttrs保存了用户自定义的childOptions和childAttrs,用于[代码43行]ServerBootstrapAcceptor构造方法。[代码30-47]]:创建
ChannelInitializer对象,添加到pipeline中,用于后续初始化ChannelHandler到pipeline中,包括用户在EchoServer配置的LoggingHandler和创建的创建ServerBootstrapAcceptor对象。[代码行34-37]:添加启动器配置的
LoggingHandler到pipeline中。[代码行39-45]:创建
ServerBootstrapAcceptor对象,添加到pipeline中。从名字上就可以看出来,ServerBootstrapAcceptor也是一个ChannelHandler实现类,专门用于接受客户端的新连接请求,把新的请求扔给某个事件循环器,我们先不做过多分析。我们发现是使用EventLoop.execute执行添加的过程,这是为什么呢?同样记录问题(Problem-3)需要说明的是
pipeline在之前介绍Netty核心组件的时候提到是一个包含ChannelHandlerContext的双向链表,每一个context对于唯一一个ChannelHandler,这里初始化后,ChannelPipeline里就是如下一个结构:
3. 注册Channel
初始化Channel一些基本配置和属性完毕后,回到一开始创建Channel的initAndRegister()入口方法,在初始化Channel后紧接着[代码行17] ChannelFuture regFuture = config().group().register(channel);明显这里是通过EventLoopGroup进入注册流程(EventLoopGroup体系将在后续文章讲解)
在EchoServer中启动器同样通过ServerBootstrap#group()设置了NioEventLoopGroup,它继承自MultithreadEventLoopGroup,所以注册流程会进入MultithreadEventLoopGroup重载的register(Channel channel)方法,代码如下:
@Overridepublic ChannelFuture register(Channel channel) { return next().register(channel);}这里会调用 next() 方法选择出来一个 EventLoop 来注册 Channel,里面实际上使用的是一个叫做 EventExecutorChooser 的东西来选择,它实际上又有两种实现方式 --PowerOfTwoEventExecutorChooser 和 GenericEventExecutorChooser,本质上就是从 EventExecutor 数组中选择一个 EventExecutor,我们这里就是 NioEventLoop,那么,它们有什么区别呢?(Problem-4:在介绍EventLoopGroup体系的后续文章中将会详细讲解,这里简单地提一下,本质都是按数组长度取余数 ,不过,2 的 N 次方的形式更高效。)
接着,来到 NioEventLoop 的 register(channel) 方法,你会不会问找不到该方法?提示NioEventLoop 继承SingleThreadEventLoop,所以父类方法:
@Overridepublic ChannelFuture register(Channel channel) { return register(new DefaultChannelPromise(channel, this));}@Overridepublic ChannelFuture register(final ChannelPromise promise) { ObjectUtil.checkNotNull(promise, "promise"); promise.channel().unsafe().register(this, promise); return promise;}可以看到,先创建了一个叫做 ChannelPromise 的东西,它是 ChannelFuture 的子类。[代码行9]又调回了 Channel 的 Unsafe 的 register () 方法,这里第一个参数是 this,也就是 NioEventLoop,第二个参数是刚创建的 ChannelPromise。
点击 AbstractUnsafe#register(EventLoop eventLoop, final ChannelPromise promise) 方法进去,代码如下:
public final void register(EventLoop eventLoop, final ChannelPromise promise) { if (eventLoop == null) { throw new NullPointerException("eventLoop"); } if (isRegistered()) { promise.setFailure(new IllegalStateException("registered to an event loop already")); return; } if (!isCompatible(eventLoop)) { promise.setFailure( new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName())); return; } AbstractChannel.this.eventLoop = eventLoop; if (eventLoop.inEventLoop()) { register0(promise); } else { try { eventLoop.execute(new Runnable() { @Override public void run() { register0(promise); } }); } catch (Throwable t) { logger.warn( "Force-closing a channel whose registration task was not accepted by an event loop: {}", AbstractChannel.this, t); closeForcibly(); closeFuture.setClosed(); safeSetFailure(promise, t); } }}[代码行15]这行代码是设置 Channel 的 eventLoop 属性。这行前面的代码主要是在校验传入的 eventLoop 参数非空,校验是否有注册过以及校验 Channel 和 eventLoop 类型是否匹配。
[代码18、24]接着,跟踪到 AbstractUnsafe#register0(ChannelPromise promise) 方法中:
private void register0(ChannelPromise promise) { try { // check if the channel is still open as it could be closed in the mean time when the register // call was outside of the eventLoop if (!promise.setUncancellable() || !ensureOpen(promise)) { return; } boolean firstRegistration = neverRegistered; doRegister(); neverRegistered = false; registered = true; // Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the // user may already fire events through the pipeline in the ChannelFutureListener. pipeline.invokeHandlerAddedIfNeeded(); safeSetSuccess(promise); pipeline.fireChannelRegistered(); // Only fire a channelActive if the channel has never been registered. This prevents firing // multiple channel actives if the channel is deregistered and re-registered. if (isActive()) { if (firstRegistration) { pipeline.fireChannelActive(); } else if (config().isAutoRead()) { // This channel was registered before and autoRead() is set. This means we need to begin read // again so that we process inbound data. // // See https://github.com/netty/netty/issues/4805 beginRead(); } } } catch (Throwable t) { // Close the channel directly to avoid FD leak. closeForcibly(); closeFuture.setClosed(); safeSetFailure(promise, t); }}[代码行9]进入 AbstractNioChannel#doRegister() 方法:
protected void doRegister() throws Exception { boolean selected = false; for (;;) { try { selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this); return; } catch (CancelledKeyException e) { if (!selected) { // Force the Selector to select now as the "canceled" SelectionKey may still be // cached and not removed because no Select.select(..) operation was called yet. eventLoop().selectNow(); selected = true; } else { // We forced a select operation on the selector before but the SelectionKey is still cached // for whatever reason. JDK bug ? throw e; } } }}[代码行5]关键一行代码,将 Java 原生NIO Selector与 Java 原生 NIO 的 Channel 对象(ServerSocketChannel) 绑定在一起,并将当前 Netty 的Channel通过 attachment 的形式绑定到 SelectionKey 上:
调用
#unwrappedSelector()方法,返回 Java 原生NIO Selector对象,而且每个NioEventLoop与Selector唯一一对应。调用
SelectableChannel#register(Selector sel, int ops, Object att)方法,注册 Java 原生NIO的Channel对象到NIO Selector对象上。
通过以上注册channel源码分析,总结流程的时序图如下:
4. 绑定端口
注册完Channel最后回到AbstractBootstrap#doBind() 方法,分析 Channel 的端口绑定逻辑。进入doBind0代码如下:
private static void doBind0( final ChannelFuture regFuture, final Channel channel, final SocketAddress localAddress, final ChannelPromise promise) { // This method is invoked before channelRegistered() is triggered. Give user handlers a chance to set up // the pipeline in its channelRegistered() implementation. channel.eventLoop().execute(new Runnable() { @Override public void run() { if (regFuture.isSuccess()) { channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE); } else { promise.setFailure(regFuture.cause()); } } });}[代码行7]:在前面
Channel注册成功的条件下,调用EventLoop执行Channel的端口绑定逻辑。但是,实际上当前线程已经是EventLoop所在的线程了,为何还要这样操作呢?答案在【第 5 至 6 行】的英语注释,这里作为一个问题记着(Problem-5)。[代码行11]:进入
AbstractChannel#bind(SocketAddress localAddress, ChannelPromise promise),同样立即异步返回并添加ChannelFutureListener.CLOSE_ON_FAILURE监听事件。[代码行13]:如果绑定端口之前的操作并没有成功,自然也就不能进行端口绑定操作了,通过promise记录异常原因。
AbstractChannel#bind(SocketAddress localAddress, ChannelPromise promise)方法如下:
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) { return pipeline.bind(localAddress, promise); }pipeline是之前创建channel的时候创建的DefaultChannelPipeline,进入该方法:
public final ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) { return tail.bind(localAddress, promise); }[在分析初始化流程的时候最后画一个DefaultChannelPipeline内部的结构,能够便于分析后面进入DefaultChannelPipeline一系列bind方法。]
首先,tail代表TailContext,进入AbstractChannelHandlerContext# bind(final SocketAddress localAddress, final ChannelPromise promise)方法:
public ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) { //省略部分代码 final AbstractChannelHandlerContext next = findContextOutbound(MASK_BIND); EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeBind(localAddress, promise); } else { safeExecute(executor, new Runnable() { @Override public void run() { next.invokeBind(localAddress, promise); } }, promise, null); } return promise;}[代码行3]:findContextOutbound方法里主要是执行ctx = ctx.prev;那么得到的next就是绑定LoggingHandler的context
[代码行6]:进入invokeBind(localAddress, promise)方法并直接执行LoggingHandler#bind(this, localAddress, promise),进入后的方法如下:
public void bind(ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise) throws Exception { if (logger.isEnabled(internalLevel)) { logger.log(internalLevel, format(ctx, "BIND", localAddress)); } ctx.bind(localAddress, promise); }设置了LoggingHandler的日志基本级别为默认的INFO后,进行绑定操作的信息打印。接着,继续循环到AbstractChannelHandlerContext# bind(final SocketAddress localAddress, final ChannelPromise promise)方法执行ctx = ctx.prev取出HeadContext进入到bind方法:
public void bind(ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise) { unsafe.bind(localAddress, promise); }兜兜转转,最终跳出了pipeline轮回到AbstractUnsafe#bind(final SocketAddress localAddress, final ChannelPromise promise) 方法,Channel 的端口绑定逻辑。代码如下:
public final void bind(final SocketAddress localAddress, final ChannelPromise promise) { //此处有省略... boolean wasActive = isActive(); try { doBind(localAddress); } catch (Throwable t) { safeSetFailure(promise, t); closeIfClosed(); return; } //此处有省略...}做实事方法doBind进入后如下:
@Overrideprotected void doBind(SocketAddress localAddress) throws Exception { if (PlatformDependent.javaVersion() >= 7) { javaChannel().bind(localAddress, config.getBacklog()); } else { javaChannel().socket().bind(localAddress, config.getBacklog()); }}到了此处,服务端的 Java 原生 NIO ServerSocketChannel 终于绑定上了端口。
三、问题归纳
Problem-1: 创建
Channel流程中AbstractChannel构造函数中为channel分配ID的算法如何实现?Problem-2:
AbstractChannel内部类AbstractUnsafe的作用?Problem-3: 初始化
channel流程中pipeline添加ServerBootstrapAcceptor是通过EventLoop.execute执行添加的过程,这是为什么呢?Problem-4:注册
channel流程中PowerOfTwoEventExecutorChooser和GenericEventExecutorChooser的区别和优化原理?Problem-5:绑定端口流程中调用
EventLoop执行Channel的端口绑定逻辑。但是,实际上当前线程已经是EventLoop所在的线程了,为何还要这样操作呢?
到此,关于"Netty服务端启动源码是什么"的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!